Abstract:
Disclosed are compositions comprising polyester macromers containing in one or more chains the residue of one or more diols and one or more diesters wherein the residue of the one or more diols and the one or more diesters alternate along the chain and a portion of the diesters are 1,1-diester-1-alkenes, and optionally one or more dihydrocarbyl dicarboxylates, and at least one terminal end comprises the residue of one of the 1,1-diester-1 alkenes and wherein one or more terminal ends may comprise the residue of one or more diols. The chains may contain the residue of the one or more diols and one or more diesters comprising one or more diesters 1,1-diester-1 alkenes and optionally one or more dihydrocarbyl dicarboxylates randomly disposed along the chains. Disclosed are methods of preparing the polyester macromers and incorporating them in a variety of polyester containing compositions such as coatings and films.
Abstract:
Functionalized compounds including residues of one or more 1,1-disubstituted alkene compounds. Preferably the functionalized compound includes the residue of two or more 1,1-disubstituted alkene compounds, which are spaced apart. The functionalized compound may be produced by a transesterification reaction. The functionalized compounds may be employed in a polymerizable composition and may be used to prepare new polymers, (for example by reacting the alkene group).
Abstract:
The present teachings are directed at 1,1-disubstituted alkene monomers (e.g., methylene beta-diketone monomers), methods for producing the same, and compositions and products formed therefrom. In the method for producing the monomer, a beta-diketone is preferably reacted with a source of formaldehyde in a modified Knoevenagel reaction optionally in the presence of an acidic or basic catalyst, and optionally in the presence of an acidic or non-acidic solvent, to form reaction complex. The reaction complex may be an oligomeric complex. The reaction complex is subjected to vaporization in order to isolate the monomer. The monomer(s) may be employed in compositions and products, including monomer-based products (e.g., inks, adhesives, coatings, sealants or reactive molding) and polymer-based products (e.g., fibers, films, sheets, medical polymers, composite polymers and surfactants).
Abstract:
The present teachings show that it is possible to polymerize 1,1-disubstituted alkene compounds in a solution (for example using one or more solvents). Polymerization of 1,1-disubstituted alkene compounds in a solution provides opportunities to better control the polymerization compared with bulk polymerization. The solution polymerization techniques can be employed for preparing homopolymers, copolymers (e.g., random copolymers), and block copolymers.
Abstract:
A polymerizable system includes a curable composition and one or more encapsulated initiator particles. The curable composition can include one or more 1,1-disubstituted alkene compounds and the encapsulated initiator particles can include one or more polymerization initiators encapsulated by a cured composition. The cured composition includes one or more 1,1-disubstituted alkene compounds.
Abstract:
The present teachings show that it is possible to polymerize 1,1-disubstituted alkene compounds in a solution (for example using one or more solvents). Polymerization of 1,1-disubstituted alkene compounds in an solution provides opportunities to better control the polymerization compared with bulk polymerization. The solution polymerization techniques can be employed for preparing homopolymers, copolymers (e.g., random copolymers), and block copolymers.
Abstract:
The present invention provides multifunctional monomers, including, but not limited to include multifunctional methylene malonate and methylene beta-ketoester monomers; methods for producing the same; and compositions and products formed therefrom. The multifunctional monomers of the invention may be produced by transesterification or by direct synthesis from monofunctional methylene malonate monomers or methylene beta-ketoester monomers. The present invention further compositions and products formed from methylene beta-ketoester monomers of the invention, including monomer-based products (e.g., inks, adhesives, coatings, sealants or reactive molding) and polymer-based products (e.g., fibers, films, sheets, medical polymers, composite polymers and surfactants).
Abstract:
Ink and coating compositions, printing and coating processes, and printed and coated substrates utilizing a polymerizable composition comprising one or more di-activated vinyl compounds, with the proviso that said a di-activated vinyl compound is not a cyanoacrylate. Exemplary compositions include methylene malonates, methylene β-ketoesters, methylene β-diketones, dialkyl disubstituted vinyls, and dihaloalkyl disubstituted vinyls. Exemplary compositions are polymerizable at ambient temperatures.
Abstract:
A composite material comprises a reinforcing material carried in a polymer matrix material which is the polymerization product of a polymerizable composition comprising a di-activated vinyl compound, with the proviso that the di-activated vinyl compound is not a cyanoacrylate. The reinforcing materials may be a wide variety of substrates including thermally sensitive materials. Exemplary composites can be molded and cured at ambient temperatures. Also disclosed are laminate materials having layered materials adhered by curing a di-activated vinyl polymerizable composition.
Abstract:
A method forming a blocked 1,1-dicarbonyl substituted comprises reacting an alkene of a 1,1-dicarbonyl substituted alkene with a blocking Michael addition donor compound such as an alcohol or thiol. The blocked 1,1-dicarbonyl substituted alkene may be polymerized by providing sufficient thermal energy whereby at least portion of the blocked alkenes revert to alkenes and may be addition polymerized or Michael added with a multifunctional Michael addition donor compound (e.g., polyol or polythiol).