摘要:
An optoelectronic semiconductor device is disclosed. The device comprises a plurality of stacked p-n junctions (e.g., multi junction device). The optoelectronic semiconductor device includes a n-doped layer disposed below the p-doped layer to form a p-n layer such that electric energy is created when photons are absorbed by the p-n layer. Recesses are formed on top of the p-doped layer at the top of the plurality of stacked p-n junctions. The junctions create an offset and an interface layer is formed on top of the p-doped layer at the top of the plurality stacked p-n junctions. The device also includes a window layer disposed below the plurality stacked p-n junctions. In another aspect, one or more optical filters are inserted into a device to enhance its efficiency through photon recycling. The device can be fabricated by epitaxial growth on a substrate and removed from the substrate through a lift off process.
摘要:
A method for providing a textured layer in an optoelectronic device is disclosed. The method includes depositing a template layer on a first layer. The template layer has significant inhomogeneity either in thickness or in composition, or both, including the possibility of forming one or more islands to provide at least one textured surface of the island layer. The method also includes exposing the template layer and the first layer to an etching process to create or alter at least one textured surface. The altered at least one textured surface is operative to cause scattering of light.
摘要:
An optoelectronic device with high band-gap absorbers optimized for indoor use and a method of manufacturing are disclosed. The optoelectronic semiconductor device comprises a p-n structure made of one or more compound semiconductors, wherein the p-n structure comprises a base layer and an emitter layer, wherein the base and/or emitter layers comprise materials whose quantum efficiency spectrum is well-matched to a spectrum of incident light, wherein the incident light is from a light source other than the sun; and wherein the device is a flexible single-crystal device. The method for forming an optoelectronic device optimized for the conversion of light from non-solar illumination sources into electricity, comprises depositing a buffer layer on a wafer; depositing a release layer above the buffer layer; depositing a p-n structure above the release layer; and lifting off the p-n structure from the wafer.
摘要:
An optoelectronic device and a method for fabricating the optoelectronic device are disclosed. The optoelectronic device comprises a p-n structure, a patterned dielectric layer comprising a dielectric material and a metal layer disposed on the dielectric layer. The metal layer makes one or more contact to the p-n structure through the patterned dielectric layer. The dielectric material may be chemically resistant to acids and may provide adhesion to the p-n structure and the metal layer. The method for fabricating an optoelectronic device comprises providing a p-n structure, providing a dielectric layer on the p-n structure and providing a metal layer on the dielectric layer and then lifting the device off the substrate, such that after the lift off the p-n structure is closer than the patterned dielectric layer to a front side of the device; wherein the device comprises the p-n structure, the patterned dielectric layer, and the metal layer.
摘要:
Epitaxial lift off systems and methods are presented. In one embodiment a tape is disposed on the opposite side of the epitaxial material than the substrate is used to hold the epitaxial material during the etching and removal steps of the ELO process. In various embodiments, the apparatus for removing the ELO film from the substrates without damaging the ELO film may include an etchant reservoir, substrate handling and tape handling mechanisms, including mechanisms to manipulate (e.g., cause tension, peel, widen the etch gap, etc.) the lift off component during the lift off process.
摘要:
A multi-junction optoelectronic device and method of manufacture are disclosed. The method comprises providing a first p-n structure on a substrate, wherein the first p-n structure comprises a first base layer of a first semiconductor with a first bandgap such that a lattice constant of the first semiconductor matches a lattice constant of the substrate, and wherein the first semiconductor comprises a Group III-V semiconductor. The method includes providing a second p-n structure, wherein the second p-n structure comprises a second base layer of a second semiconductor with a second bandgap, wherein a lattice constant of the second semiconductor matches a lattice constant of the first semiconductor, and wherein the second semiconductor comprises a Group IV semiconductor. The method also includes lifting off the substrate the multi-junction optoelectronic device having the first p-n structure and the second p-n structure, wherein the multi-junction optoelectronic device is a flexible device.
摘要:
Embodiments described herein provide processes for forming and removing epitaxial films and materials from growth wafers by epitaxial lift off (ELO) processes. In some embodiments, the growth wafer has edge surfaces with an off-axis orientation which is utilized during the ELO process. The off-axis orientation of the edge surface provides an additional variable for controlling the etch rate during the ELO process and therefore the etch front may be modulated to prevent the formation of high stress points which reduces or prevents stressing and cracking the epitaxial film stack. In one embodiment, the growth wafer is rectangular and has an edge surface with an off-axis orientation rotated by an angle greater than 0° and up to 90° relative to an edge orientation of at 0°.
摘要:
Embodiments described herein provide processes for forming and removing epitaxial films and materials from growth wafers by epitaxial lift off (ELO) processes. In some embodiments, the growth wafer has edge surfaces with an off-axis orientation which is utilized during the ELO process. The off-axis orientation of the edge surface provides an additional variable for controlling the etch rate during the ELO process and therefore the etch front may be modulated to prevent the formation of high stress points which reduces or prevents stressing and cracking the epitaxial film stack. In one embodiment, the growth wafer is rectangular and has an edge surface with an off-axis orientation rotated by an angle greater than 0° and up to 90° relative to an edge orientation of at 0°.
摘要:
An optoelectronic device having a textured layer is described. In an aspect, a method may be used to produce the optoelectronic device, where the method includes epitaxially growing a semiconductor layer of the optoelectronic device on a growth substrate, and exposing the semiconductor layer to an etching process to create at least one textured surface in the semiconductor layer. The textured semiconductor layer can be referred to as a textured layer. The etching process is performed without the use of a template layer, or similar layer, configured as a mask to generate the texturing. The etching process can be done by one or more of a liquid or solution-based chemical etchant, gas etching, laser etching, plasma etching, or ion etching. The method can also include lifting the semiconductor layer of the optoelectronic device from the growth substrate by, for example, the use of an epitaxial lift off (ELO) process.
摘要:
A multi-junction optoelectronic device and method of manufacture are disclosed. The method comprises providing a first p-n structure on a substrate, wherein the first p-n structure comprises a first base layer of a first semiconductor with a first bandgap such that a lattice constant of the first semiconductor matches a lattice constant of the substrate, and wherein the first semiconductor comprises a Group III-V semiconductor. The method includes providing a second p-n structure, wherein the second p-n structure comprises a second base layer of a second semiconductor with a second bandgap, wherein a lattice constant of the second semiconductor matches a lattice constant of the first semiconductor, and wherein the second semiconductor comprises a Group IV semiconductor. The method also includes lifting off the substrate the multi-junction optoelectronic device having the first p-n structure and the second p-n structure, wherein the multi-junction optoelectronic device is a flexible device.