Abstract:
Embodiments of the present disclosure generally relate to methods of cleaning a structure and methods of depositing a capping layer in a structure. The method of cleaning a structure includes suppling a cleaning gas, including a first gas including nitrogen (N) and a second gas including fluorine (F), to a bottom surface of a structure. The cleaning gas removes unwanted metal oxide and etch residue from the bottom surface of the structure. The method of depositing a capping layer includes depositing the capping layer over the bottom surface of the structure. The methods described herein reduce the amount of unwanted metal oxides and residue, which improves adhesion of deposited capping layers.
Abstract:
A method includes receiving a plurality of sets of sensor data associated with a processing chamber of a substrate processing system. Each of the plurality of sets of sensor data comprises a corresponding sensor value of the processing chamber mapped to a corresponding spacing value of the processing chamber. The method further includes providing the plurality of sets of sensor data as input to a trained machine learning model. The method further includes obtaining, from the trained machine learning model, one or more outputs indicative of a health of the processing chamber. The method further includes causing, based on the one or more outputs, performance of one or more corrective actions associated with the processing chamber.
Abstract:
Described is a process to clean up junction interfaces for fabricating semiconductor devices involving forming low-resistance electrical connections between vertically separated regions. An etch can be performed to remove silicon oxide on silicon surface at the bottom of a recessed feature. Described are methods and apparatus for etching up the bottom oxide of a hole or trench while minimizing the effects to the underlying epitaxial layer and to the dielectric layers on the field and the corners of metal gate structures. The method for etching features involves a reaction chamber equipped with a combination of capacitively coupled plasma and inductive coupled plasma. CHxFy gases and plasma are used to form protection layer, which enables the selectively etching of bottom silicon dioxide by NH3—NF3 plasma. Ideally, silicon oxide on EPI is removed to ensure low-resistance electric contact while the epitaxial layer and field/corner dielectric layers are—etched only minimally or not at all.
Abstract:
Methods and apparatus for producing a reduced contact resistance for cobalt-titanium structures. In some embodiments, a method comprises depositing a titanium layer using a chemical vapor deposition (CVD) process, depositing a titanium nitride layer on the titanium layer using an atomic layer deposition (ALD) process, depositing a first cobalt layer on the titanium nitride layer using a physical vapor deposition (PVD) process, and depositing a second cobalt layer on the first cobalt layer using a CVD process.
Abstract:
An FI having an in-situ particle detector and a method for particle detection therein are provided. In one aspect, the FI includes a fan, a substrate support, a particle detector, and an exhaust outlet. The fan, substrate support, and particle detector are arranged such that, in operation, the fan directs air towards the exhaust outlet and over a substrate on the substrate support to create laminar flow. The particle detector, positioned downstream from the substrate support and upstream from the exhaust outlet, analyzes the air and detects particle concentration before the particles are exhausted. The collected particle detection data may be combined with data from other sensors in the FI and used to identify the source of particle contamination. The particle detector may also be incorporated into other system components, including but not limited to, a load-lock or buffer chamber to detect particle concentration therein.
Abstract:
Methods for depositing titanium oxide films by atomic layer deposition are disclosed. Titanium oxide films may include a titanium nitride cap, an oxygen rich titanium nitride cap or a mixed oxide nitride layer. Also described are methods for self-aligned double patterning including titanium oxide spacer films.