Abstract:
A mass spectrometric method for sequencing nucleic acids using RNA polymerases, including DNA-dependent and RNA-dependent RNA polymerases, is provided. The methods use a modified Sanger sequencing strategy in which RNA polymerase is used to generate a set of nested RNA transcripts obtained by base-specific chain termination. These are analyzed by mass spectrometry. A method of identifying transcriptional terminator sequences or attenuator sequences is also provided.
Abstract:
Systems, methods, and apparatus for determining at least a portion of fetal genome are provided. DNA fragments from a maternal sample (maternal and fetal DNA) can be analyzed to identify alleles at certain loci. The amounts of DNA fragments of the respective alleles at these loci can be analyzed together to determine relative amounts of the haplotypes for these loci and determine which haplotypes have been inherited from the parental genomes. Loci where the parents are a specific combination of homozygous and heterozygous can be analyzed to determine regions of the fetal genome. Reference haplotypes common in the population can be used along with the analysis of the DNA fragments of the maternal sample to determine the maternal and paternal genomes. Determination of mutations, a fractional fetal DNA concentration in a maternal sample, and a proportion of coverage of a sequencing of the maternal sample can also be provided.
Abstract:
Systems, methods, and apparatus for determining at least a portion of fetal genome are provided. DNA fragments from a maternal sample (maternal and fetal DNA) can be analyzed to identify alleles at certain loci. The amounts of DNA fragments of the respective alleles at these loci can be analyzed together to determine relative amounts of the haplotypes for these loci and determine which haplotypes have been inherited from the parental genomes. Loci where the parents are a specific combination of homozygous and heterozygous can be analyzed to determine regions of the fetal genome. Reference haplotypes common in the population can be used along with the analysis of the DNA fragments of the maternal sample to determine the maternal and paternal genomes. Determination of mutations, a fractional fetal DNA concentration in a maternal sample, and a proportion of coverage of a sequencing of the maternal sample can also be provided.
Abstract:
The present invention provides nucleic acid molecules, DNA constructs, plasmids, and methods for post-transcriptional regulation of gene expression using RNA molecules to both repress and activate translation of an open reading frame. Repression of gene expression is achieved through the presence of a regulatory nucleic acid element (the cis-repressive RNA or crRNA) within the 5′ untranslated region (5′ UTR) of an mRNA molecule. The nucleic acid element forms a hairpin (stem/loop) structure through complementary base pairing. The hairpin blocks access to the mRNA transcript by the ribosome, thereby preventing translation. In particular, in embodiments of the invention designed to operate in prokaryotic cells, the stem of the hairpin secondary structure sequesters the ribosome binding site (RBS). In embodiments of the invention designed to operate in eukaryotic cells, the stem of the hairpin is positioned upstream of the start codon, anywhere within the 5′ UTR of an mRNA. A small RNA (trans-activating RNA, or taRNA), expressed in trans, interacts with the crRNA and alters the hairpin structure. This alteration allows the ribosome to gain access to the region of the transcript upstream of the start codon, thereby activating transcription from its previously repressed state.
Abstract:
This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include DNA or RNA in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.
Abstract:
The present invention is directed to compositions and methods for the production of split-biomolecular conjugates for the directed targeting of nucleic acids and polypeptides. More preferably, the compositions and methods allow for the use of the split biomolecular conjugates for the treatment of diseases, malignancies, disorders and screening. In some embodiments, the split biomolecular conjugates comprise split effector protein fragments conjugated to a probe, and interaction of both probes with a target nucleic acid or target polypeptide, such as a pathogenic nucleic acid sequence or pathogenic protein, brings a the split-effector fragments together to facilitate the reassembly of the effector molecule. Depending on the effector molecule, the protein complementation results in a cellular effect, in particular for the treatment of diseases, malignancies and disorders.
Abstract:
The present invention is directed to novel methods for in vitro and in vivo detection of target nucleic acid molecules, including DNA and RNA targets, as well as nucleic acid analogues. The present invention is based on protein complementation, in which two individual polypeptides are inactive. When the two inactive polypeptide fragment are brought in close proximity during hybridization to a target nucleic acid, they re-associate into an active, detectable protein.
Abstract:
Provided herein are methods for prognosing and diagnosing fat deposition and related disorders (e.g., obesity and non-insulin diabetes dependent mellitus (NIDDM)) in a subject, reagents and kits for carrying out the methods, methods for identifying candidate therapeutics for reducing fat deposition and related disorders, and therapeutic methods for reducing fat deposition or treating fat deposition related disorders in a subject. These embodiments are based in part upon an analysis of polymorphic variations of the nucleic acid set forth in SEQ ID NO:1.
Abstract translation:本文提供了用于预测和诊断受试者的脂肪沉积和相关疾病(例如,肥胖和非胰岛素糖尿病依赖性细胞(NIDDM))的方法,用于实施该方法的试剂和试剂盒,用于鉴定用于减少脂肪沉积的候选治疗剂的方法 和相关疾病,以及用于减少受试者中脂肪沉积或治疗脂肪沉积相关疾病的治疗方法。 这些实施方案部分地基于对SEQ ID NO:1所示的核酸的多态变异的分析。
Abstract:
The present invention generally relates to high density nucleic acid arrays and methods of synthesizing nucleic acid sequences on a solid surface. Specifically, the present invention contemplates the use of stabilized nucleic acid primer sequences immobilized on solid surfaces, and circular nucleic acid sequence templates combined with the use of isothermal rolling circle amplification to thereby increase nucleic acid sequence concentrations in a sample or on an array of nucleic acid sequences.
Abstract:
An open system is provided for performing a submicroliter reaction. An open system can contain a solid support having a target site for performing the reaction; a liquid dispensing system such as a nanoliter dispensing pipette for dispensing a submicroliter amount of a liquid to the target site; a temperature controlling device for regulating the temperature of the support; and means for controlling the amount of liquid dispensed, which corresponds to the amount of liquid that evaporates from the target site. Also provided is an open system, including a solid support having a target site; a liquid dispensing system, which can dispense a liquid to the target site; a temperature controlling system, which regulates the temperature of the solid support; and an interface, which regulates an amount of liquid dispensed from the liquid dispensing system. Also provided is a method for performing a reaction in a submicroliter volume in an unsealed environment by dispensing a submicroliter volume of liquid onto the surface of a support; monitoring the temperature of the support; monitoring an amount or rate of evaporation of the liquid; and dispensing to the surface of the support a further amount of the liquid, which corresponds to the amount lost from the support due to evaporation, thereby maintaining the reaction volume at a predetermined volume throughout the course of the reaction. A method also is provided for maintaining a volume of a reaction mixture, which can be one of a plurality of reaction mixtures, on a solid support in an unsealed environment by monitoring the rate of evaporation of a liquid from the reaction mixture; and dispensing into the reaction mixture an amount of liquid that corresponds to the amount that evaporates.