Abstract:
A novel synthetic crystalline molecular sieve material, designated SSZ-113, can be synthesized using 1,3-bis(2,3-dimethyl-1H-imidazolium)propane dications as a structure directing agent. SSZ-113 may be used in organic compound conversion and/or sorptive processes.
Abstract:
A novel synthetic crystalline molecular sieve material, designated SSZ-113, can be synthesized using 1,3-bis(2,3-dimethyl-1H-imidazolium)propane dications as a structure directing agent. SSZ-113 may be used in organic compound conversion and/or sorptive processes.
Abstract:
An aluminosilicate molecular sieve of STW framework type, designated herein as SSZ-110, and having a molar ratio of SiO2/Al2O3 of less than 100, is provided. SSZ-110 may be synthesized using an organic structure directing agent selected from one or more of 1,4-bis(2,3-dimethyl-1H-imidazolium)butane dications, 1,5-bis(2,3-dimethyl-1H-imidazolium)pentane dications, and 1,6-bis(2,3-dimethyl-1H-imidazolium)hexane dications. SSZ-110 may be used in organic compound conversion reactions and sorptive processes.
Abstract:
Provided is an improved process for olefin oligomerization allowing one to realize superior selectivity. The process comprises contacting a hydrocarbon feed comprised of straight and branched chain olefins under oligomerization conditions with a catalyst comprising delaminated SSZ-70. The delaminated SSZ-70 offers a zeolite layer with a single unit cell of thickness in one dimension, allowing for elimination of mass transfer in comparison with regular SSZ-70. The result is superior selectivity.
Abstract:
Crystalline molecular sieves and their synthesis using quaternary N-methyl-diisoalkylammonium cations as organic structure directing agents are disclosed. The structure directing agent has the following structure (1): in which R1 is selected from hydrogen, a methyl group, an ethyl group, a propyl group, and a hydroxymethyl group; and R2, R3, R4 and R5 are independently selected from a methyl group, an ethyl group, and a propyl group.
Abstract:
The present invention is directed to an alumino-borosilicate SSZ-57 zeolite having enhanced large pore selectivity. The alumino-borosilicate SSZ-57 zeolite of the present invention is characterized as having substantially all of its aluminum atoms located within regions of the zeolite structure which form the 12 ring channels.
Abstract:
This disclosure is directed to uses for a new crystalline molecular sieve designated SSZ-99. SSZ-99 is synthesized using a methylethyldiisopropylammonium cation as a structure directing agent.
Abstract:
Provided is an improved alkylation process using a delaminated SSZ-70 catalyst. The process comprises contacting a hydrocarbon feedstock comprising olefins and isoparaffins with a catalyst comprising delaminated SSZ-70 under alkylating reaction conditions. The delaminated SSZ-70 offers a zeolite layer with a single unit cell of thickness in one dimension, allowing an elimination of mass transfer in comparison with regular SSZ-70. This prevents coke formation inside zeolite channels and improves catalyst stability.
Abstract:
A method is disclosed for producing small crystal, high aluminum content zincoaluminosilicate crystalline materials having the SSZ-41 framework structure. The compositions made according to that method, as well as uses of the same, are also disclosed.