Abstract:
The present invention relates to a GaN transistor, and a method of fabricating the same, in which a structure of a bonding pad is improved by forming an ohmic metal layer at edges of the bonding pad of a source, a drain, and a gate so as to be appropriate to wire-bonding or a back-side via-hole forming process. Accordingly, adhesive force between a metal layer of the bonding pad and a GaN substrate is enhanced by forming the ohmic metal at the edges of the bonding pad during manufacturing of the GaN transistor, thereby minimizing a separation phenomenon of a pad layer during the wire-bonding or back-side via-hole forming process, and improving reliability of a device.
Abstract:
An apparatus and method for generating an electrical circuit of semiconductor channel resistor including a first passive element part including a resistor and a capacitor connected in parallel between a first port and a second port, and an ohmic resistor connected in series to the resistor and the capacitor which are connected in parallel are provided. The apparatus includes a substrate selection part configured to receive a selected substrate item; a resistor selection part configured to receive a selected resistor item; a capacitor selection part configured to receive a selected capacitor item; and a circuit generating part configured to generate an electrical circuit from the selected substrate item, the selected resistor item, and the selected capacitor item.
Abstract:
Provided herein is a patch antenna including a multilayered substrate on which a plurality of dielectric layers are laminated; at least one metal pattern layer disposed between the plurality of dielectric layers outside a central area of the multilayered substrate; an antenna patch disposed on an upper surface of the multilayered substrate and within the central area; a ground layer disposed on a lower surface of the multilayered substrate; a plurality of connection via patterns penetrating the plurality of dielectric layers to connect the metal pattern layer and the ground layer, and surrounding the central area; a transmission line comprising a first transmission line unit disposed on the upper surface of the multilayered substrate and located outside the central area, and a second transmission line unit disposed on the upper surface of the multilayered substrate and located within the central area; and an impedance transformer located below the second transmission line unit within the central area of the multilayered substrate.
Abstract:
The present disclosure relates to a nitride electronic device and a method for manufacturing the same, and particularly, to a nitride electronic device and a method for manufacturing the same that can implement various types of nitride integrated structures on the same substrate through a regrowth technology (epitaxially lateral over-growth: ELOG) of a semi-insulating gallium nitride (GaN) layer used in a III-nitride semiconductor electronic device including Group III elements such as gallium (Ga), aluminum (Al) and indium (In) and nitrogen.
Abstract:
Disclosed is a method of manufacturing a field effect type compound semiconductor device in which leakage current of a device is decreased and breakdown voltage is enhanced. The method of manufacturing a field effect type compound semiconductor device includes: stacking an active layer and an ohmic layer on a substrate and forming a first oxide layer on the ohmic layer; forming a mesa region in predetermined regions of the first oxide layer, the ohmic layer, and the active layer; planarizing the mesa region after forming a nitride layer by evaporating a nitride on the mesa region; forming an ohmic electrode on the first oxide layer; forming a minute gate resist pattern after forming a second oxide layer on a semiconductor substrate in which the ohmic electrode is formed and forming a minute gate pattern having a under-cut shaped profile by dry-etching the first oxide layer, the nitride layer, and the second oxide layer; forming a gate recess region by forming a head pattern of a gamma gate electrode on the semiconductor substrate; and forming the gamma gate electrode by evaporating refractory metal on the semiconductor substrate in which the gate recess region is formed.
Abstract:
Disclosed is a method of manufacturing a field effect type compound semiconductor device in which leakage current of a device is decreased and breakdown voltage is enhanced. The method of manufacturing a field effect type compound semiconductor device includes: stacking an active layer and an ohmic layer on a substrate and forming a first oxide layer on the ohmic layer; forming a mesa region in predetermined regions of the first oxide layer, the ohmic layer, and the active layer; planarizing the mesa region after forming a nitride layer by evaporating a nitride on the mesa region; forming an ohmic electrode on the first oxide layer; forming a minute gate resist pattern after forming a second oxide layer on a semiconductor substrate in which the ohmic electrode is formed and forming a minute gate pattern having a under-cut shaped profile by dry-etching the first oxide layer, the nitride layer, and the second oxide layer; forming a gate recess region by forming a head pattern of a gamma gate electrode on the semiconductor substrate; and forming the gamma gate electrode by evaporating refractory metal on the semiconductor substrate in which the gate recess region is formed.