Abstract:
A field effect transistor is provided. The transistor may include a source electrode and a drain electrode provided spaced apart from each other on a substrate and a ‘+’-shaped gate electrode provided on a portion of the substrate located between the source and drain electrodes.
Abstract:
A field effect transistor is provided. The field effect transistor may include a capping layer on a substrate, a source ohmic electrode and a drain ohmic electrode on the capping layer, a first insulating layer and a second insulating layer stacked on the capping layer to cover the source and drain ohmic electrodes, a Γ-shaped gate electrode including a leg portion and a head portion, the leg portion being connected to the substrate between the source ohmic electrode and the drain ohmic electrode, and the head portion extending from the leg portion to cover a top surface of the second insulating layer, a first planarization layer on the second insulating layer to cover the Γ-shaped gate electrode, and a first electrode on the first planarization layer, the first electrode being connected to the source ohmic electrode or the drain ohmic electrode.
Abstract:
Provided herein is a patch antenna including a multilayered substrate on which a plurality of dielectric layers are laminated; at least one metal pattern layer disposed between the plurality of dielectric layers outside a central area of the multilayered substrate; an antenna patch disposed on an upper surface of the multilayered substrate and within the central area; a ground layer disposed on a lower surface of the multilayered substrate; a plurality of connection via patterns penetrating the plurality of dielectric layers to connect the metal pattern layer and the ground layer, and surrounding the central area; a transmission line comprising a first transmission line unit disposed on the upper surface of the multilayered substrate and located outside the central area, and a second transmission line unit disposed on the upper surface of the multilayered substrate and located within the central area; and an impedance transformer located below the second transmission line unit within the central area of the multilayered substrate.
Abstract:
Disclosed is a method of manufacturing a field effect type compound semiconductor device in which leakage current of a device is decreased and breakdown voltage is enhanced. The method of manufacturing a field effect type compound semiconductor device includes: stacking an active layer and an ohmic layer on a substrate and forming a first oxide layer on the ohmic layer; forming a mesa region in predetermined regions of the first oxide layer, the ohmic layer, and the active layer; planarizing the mesa region after forming a nitride layer by evaporating a nitride on the mesa region; forming an ohmic electrode on the first oxide layer; forming a minute gate resist pattern after forming a second oxide layer on a semiconductor substrate in which the ohmic electrode is formed and forming a minute gate pattern having a under-cut shaped profile by dry-etching the first oxide layer, the nitride layer, and the second oxide layer; forming a gate recess region by forming a head pattern of a gamma gate electrode on the semiconductor substrate; and forming the gamma gate electrode by evaporating refractory metal on the semiconductor substrate in which the gate recess region is formed.
Abstract:
Provided is a low-cost and high-efficient system for measuring reliability of an electronic device. According to the present invention, a single input power source for applying power to an input terminal of a plurality of electronic device samples and a single output power source for applying power to an output terminal of the plurality of electronic device samples are provided. Further, an input switch having first switches of which the number corresponds to the number of the plurality of electronic device samples, the input switch being installed between the input power source and the input terminal so that the first switches are selectively switched to apply input power; and an output switch having second switches of which the number corresponds to the number of the plurality of electronic device samples, the output switch being installed between the output power source and the output terminal so that the second switches are selectively switched to apply output power are provided.
Abstract:
The present invention relates to a high reliability field effect power device and a manufacturing method thereof. A method of manufacturing a field effect power device includes sequentially forming a transfer layer, a buffer layer, a barrier layer and a passivation layer on a substrate, patterning the passivation layer by etching a first region of the passivation layer, and forming at least one electrode on the first region of the barrier layer exposed by patterning the passivation layer, wherein the first region is provided to form the at least one electrode, and the passivation layer may include a material having a wider bandgap than the barrier layer to prevent a trapping effect and a leakage current of the field effect power device.
Abstract:
A method of manufacturing a semiconductor device includes forming devices including source, drain and gate electrodes on a front surface of a substrate including a bulk silicon, a buried oxide layer, an active silicon, a gallium nitride layer, and an aluminum-gallium nitride layer sequentially stacked, etching a back surface of the substrate to form a via-hole penetrating the substrate and exposing a bottom surface of the source electrode, conformally forming a ground interconnection on the back surface of the substrate having the via-hole, forming a protecting layer on the front surface of the substrate, and cutting the substrate to separate the devices from each other.
Abstract:
Provided is a semiconductor device including a substrate in which an insulation layer is disposed between a first semiconductor layer and a second semiconductor layer, a through-hole penetrating through the substrate, the through-hole having a first hole penetrating through the first semiconductor layer and a second hole penetrating through the insulation layer and the second semiconductor layer from a bottom surface of the first hole, an epi-layer disposed inside the through-hole, a drain electrode disposed inside the second hole and contacting one surface of the epi-layer, and a source electrode and a gate electrode which are disposed on the other surface of the epi-layer.
Abstract:
Provided is a cascode circuit including first and second transistors connected between a drain terminal and a source terminal in cascode form, a level sifter configured to change a voltage level of a switching control signal applied to a gate terminal and provide the changed switching control signal to a gate of the first transistor, a buffer configured to delay the switching control signal and provide the delayed switching control signal to a gate of the second transistor, and a first resistor connected between the level shifter and the gate of the first transistor.
Abstract:
A field effect transistor is provided. The transistor may include a source electrode and a drain electrode provided spaced apart from each other on a substrate and a ‘+’-shaped gate electrode provided on a portion of the substrate located between the source and drain electrodes.