Abstract:
A trench in an inter-layer dielectric formed on a semiconductor substrate is defined by a bottom and sidewalls. A copper barrier lines the trench with a copper-growth-promoting liner over the barrier. The trench has bulk copper filling it, and includes voids in the copper. The copper with voids is removed, including from the sidewalls, leaving a void-free copper portion at the bottom. Immersion in an electroless copper bath promotes upward growth of copper on top of the void-free copper portion without inward sidewall copper growth, resulting in a void-free copper fill of the trench.
Abstract:
One illustrative method disclosed herein includes forming a trench/via in a layer of insulating material, forming a barrier layer in the trench/via, forming a copper-based seed layer on the barrier layer, converting at least a portion of the copper-based seed layer into a copper-based nitride layer, depositing a bulk copper-based material on the copper-based nitride layer so as to overfill the trench/via and performing at least one chemical mechanical polishing process to remove excess materials positioned outside of the trench/via to thereby define a copper-based conductive structure. A device disclosed herein includes a layer of insulating material, a copper-based conductive structure positioned in a trench/via within the layer of insulating material and a copper-based silicon or germanium nitride layer positioned between the copper-based conductive structure and the layer of insulating material.
Abstract:
One illustrative method disclosed herein includes forming a trench/via in a layer of insulating material, forming a graphene liner layer in at least the trench/via, forming a copper-based seed layer on the graphene liner layer, depositing a bulk copper-based material on the copper-based seed layer so as to overfill the trench/via, and performing at least one chemical mechanical polishing process to remove at least excess amounts of the bulk copper-based material and the copper-based seed layer positioned outside of the trench/via to thereby define a copper-based conductive structure with a graphene liner layer positioned between the copper-based conductive structure and the layer of insulating material.
Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming an interconnect in a first interlayer dielectric. A first cap is formed overlying the first interlayer dielectric adjacent to the interconnect, and a second interlayer dielectric is formed overlying the first interlayer dielectric, the interconnect, and the cap. A contact is formed through the second interlayer dielectric, where the contact includes an overlap region and a connection region. The overlap region directly overlies the first interlayer dielectric adjacent to the interconnect, and the connection region directly contacts the interconnect. The first cap is positioned between the overlap region and the first interlayer dielectric.
Abstract:
Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming a mask overlying a material to be etched by forming first hard mask segments overlying the material to be etched, forming sacrificial mandrels overlying the material to be etched and around each hard mask segment, forming second hard mask segments overlying the semiconductor substrate and adjacent each sacrificial mandrel, and removing the sacrificial mandrels to form first gaps surrounding each first hard mask segment, wherein each first gap is bounded by a respective first hard mask segment and an adjacent second hard mask segment. The method includes etching the material to be etched through the mask.
Abstract:
A method includes forming a trench/via in a layer of insulating material, forming a first layer comprised of silicon or germanium on the insulating material in the trench/via, forming a copper-based seed layer on the first layer, converting at least a portion of the copper-based seed layer into a copper-based nitride layer, depositing a bulk copper-based material on the copper-based nitride layer so as to overfill the trench/via and performing at least one chemical mechanical polishing process to remove excess materials positioned outside of the trench/via to thereby define a copper-based conductive structure. A device includes a layer of insulating material, a copper-based conductive structure positioned in a trench/via within the layer of insulating material and a copper-based nitride layer positioned between the copper-based conductive structure and the layer of insulating material, wherein the copper-based nitride layer contacts both of the copper-based conductive structure and the layer of insulating material.
Abstract:
Embodiments of the disclosure provide a substrate structure for an integrated circuit (IC) structure, including: a first dielectric layer positioned above a semiconductor substrate; a first plurality of trenches extending at least partially into the first dielectric layer from an upper surface of the first dielectric layer; and a first metal formed within the first plurality of trenches, wherein a spatial arrangement of the first plurality of trenches causes coupling of surface plasmons in the first metal to at least one wavelength of an incident light.
Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming an interconnect trench in a dielectric layer, and forming a conformal barrier layer overlying the dielectric layer and within the interconnect trench. A barrier spacer is formed by removing the conformal barrier layer from an interconnect trench bottom, and an interconnect is formed within the interconnect trench after forming the barrier spacer. An air gap trench is formed in the dielectric layer adjacent to the barrier spacer, and a top cap is formed overlying the interconnect and the air gap trench, where the top cap bridges the air gap trench to produce an air gap in the air gap trench.
Abstract:
A method of forming a thinner barrier/liner stack for vias and metal lines and the resulting device are disclosed. Embodiments include forming a via through an interlayer dielectric (ILD) and capping layer, down to a first metal layer; forming a moisture scavenging layer precursor over the ILD and on side and bottom surfaces of the via; annealing the moisture scavenging layer precursor, forming a moisture scavenging layer; forming a barrier/liner stack over the moisture scavenging layer; and depositing a second metal layer over the barrier/liner stack and filling the via and trench.
Abstract:
A process is provided for methods of reducing damage to an ultra-low k layer during fabrication. In one aspect, a method includes: providing a cured ultra-low k film containing pores filled with a pore-stuffing material; and modifying an exposed surface of the ultra-low k film to provide a modified layer in the ultra-low k film. In another aspect, a semiconductor device comprising a modified layer on a surface of an ultra-low k film is provided.