Abstract:
At least one method, apparatus and system disclosed herein for forming a finFET device having a pass-through structure. A first gate structure and a second gate structure are formed on a semiconductor wafer. A first active area is formed on one end of the first and second gate structures. A second active area is formed on the other end of the first and second gate structures. A trench silicide (TS) structure self-aligned to the first and second gate structures is formed. The TS structure is configured to operatively couple the first active area to the second active area.
Abstract:
A hard mask is formed into lines and bridges two adjacent lines using mandrels, spacers for the mandrels and a lithographic process for each bridge to create a metal line pattern in a layer of an interconnect structure with a line pitch below lithographic resolution.
Abstract:
A capacitor structure includes a first metal layer including a first plurality of horizontally-spaced neutral conductive lines positioned horizontally between a first plurality of horizontally-spaced high voltage conductive lines. The capacitor structure further includes a second metal layer including a second plurality of horizontally-spaced neutral conductive lines positioned horizontally between a second plurality of horizontally-spaced high voltage conductive lines. The capacitor structure further includes a third metal layer positioned vertically below the first metal layer and above the second metal layer, the third metal layer including a third plurality of horizontally-spaced neutral conductive lines positioned horizontally between a first plurality of horizontally-spaced low voltage conductive lines. The first plurality of low voltage lines are positioned vertically between the first and second plurality of neutral lines.
Abstract:
At least one method, apparatus and system disclosed herein for forming a finFET device having a pass-through structure. A first gate structure and a second gate structure are formed on a semiconductor wafer. A first active area is formed on one end of the first and second gate structures. A second active area is formed on the other end of the first and second gate structures. A trench silicide (TS) structure self-aligned to the first and second gate structures is formed. The TS structure is configured to operatively couple the first active area to the second active area.
Abstract:
Semiconductor devices and methods of fabricating the semiconductor devices with cross coupled contacts using patterning for cross couple pick-up are disclosed. One method includes, for instance: obtaining an intermediate semiconductor device; performing a first lithography to pattern a first shape; performing a second lithography to pattern a second shape overlapping a portion of the first shape; processing the first shape and the second shape to form an isolation region at the overlap; and forming four regions separated by the isolation region. An intermediate semiconductor device is also disclosed.
Abstract:
A method includes providing a structure having a first hardmask layer, second hardmask layer and mandrel layer disposed respectively over a dielectric stack. An array of mandrels is patterned into the mandrel layer. A gamma trench is patterned into the second hardmask layer and between the mandrels. Self-aligned inner spacers are formed on sidewalls of the gamma trench, the inner spacers forming a portion of a pattern. The pattern is etched into the dielectric stack to form an array of alternating mandrel and non-mandrel metal lines extending in a Y direction and being self-aligned in a perpendicular X direction. The portion of the pattern formed by the inner spacers is utilized to form a pair of non-mandrel line cuts in a non-mandrel line. The non-mandrel line cuts are self-aligned in the Y direction.
Abstract:
A method includes providing a starting interconnect structure for semiconductor device(s), the starting interconnect structure including a first metallization layer with a first power rail. The method further includes forming a second metallization layer over the first metallization layer with a second power rail, and directly electrically connecting the first power rail and the second power rail, the directly electrically connecting including forming metal-filled vias between the first power rail and the second power rail. The method further includes forming additional metallization layer(s) over the second metallization layer with additional power rail(s), and directly electrically connecting each of the additional power rail(s) to a power rail of a metallization layer directly below.
Abstract:
Methods for fabricating integrated circuits are provided. One method includes decomposing a master pattern layout for a semiconductor device layer that includes a target metal line with a target interconnecting via/contact into a first sub-pattern and a second sub-pattern. The target metal line is decomposed into a first line feature pattern that is part of the first sub-pattern and a second line feature pattern that is part of the second sub-pattern such that the first and second line feature patterns have overlapping portions defining a stitch that corresponds to the target interconnecting via/contact. A first photomask is generated that corresponds to the first sub-pattern. A second photomask is generated that corresponds to the second sub-pattern.
Abstract:
A method is provided, in which a masking reticle including a plurality of pattern blocks is modified, the modifying including: identifying a first pattern block and a second pattern block of the plurality of pattern blocks where at least a first portion of the first pattern block and a second portion of the second pattern block are in parallel relation; and reducing a length of the first portion of the first pattern block when a transverse separation S between corresponding length edges of the first portion of the first pattern block the second portion of the second pattern block falls within a pre-defined forbidden pitch range for the masking reticle. The method may include repeating the identifying and reducing of pairs of pattern blocks on the mask reticle to remove portions of pattern block pairs spaced apart by a transverse separation falling within a forbidden-pitch range.
Abstract:
Semiconductor devices and methods of fabricating the semiconductor devices with chamfer-less via multi-patterning are disclosed. One method includes, for instance: obtaining an intermediate semiconductor device; performing a trench etch into a portion of the intermediate semiconductor device to form a trench pattern; depositing an etching stack; performing at least one via patterning process; and forming at least one via opening into a portion of the intermediate semiconductor device. An intermediate semiconductor device is also disclosed.