Abstract:
Electroplating techniques including an electroplating system and a method for using the electroplating system are provided. The electroplating system has: an electroplating apparatus for electroplating a workpiece, the electroplating apparatus has an electroplating tank configured to contain a solution including target organics; a first reservoir configured to receive the solution including the target organics from the electroplating tank, and to hold the solution including the target organics; a foaming mechanism configured to, in the first reservoir, separate the target organics from the solution through foaming action such that the solution with a reduced concentration of the target organics is separated from a foam including the separated target organics; and a diverting mechanism configured to selectively feed the solution with the reduced concentration of the target organics to one of the first reservoir and the electroplating tank of the electroplating apparatus.
Abstract:
A three dimensional multi-die package includes a first die and second die. The first die includes a contact attached to solder. The second die is thinned by adhesively attaching a handler to a top side of the second die and thinning a bottom side of the second die. The second die includes a multilayer contact of layered metallurgy that inhibits transfer of adhesive thereto. The layered metallurgy includes at least one layer that is wettable to the solder. The multilayer contact may include a Nickel layer, a Copper layer upon the Nickel layer, and a Nickel-Iron layer upon the Copper layer. The multilayer contact may also include a Nickel layer, a Copper-Tin layer upon the Nickel layer, and a Tin layer upon the Copper-Tin layer.
Abstract:
Embodiments of the invention include a lead-free solder interconnect structure and methods for making a lead-free interconnect structure. The structure includes a semiconductor substrate having a last metal layer, a copper pedestal attached to the last metal layer, a barrier layer attached to the copper pedestal, a barrier protection layer attached to the barrier layer, and a lead-free solder layer contacting at least one side of the copper pedestal.
Abstract:
A three dimensional multi-die package includes a first die and second die. The first die includes a contact attached to solder. The second die is thinned by adhesively attaching a handler to a top side of the second die and thinning a bottom side of the second die. The second die includes a multilayer contact of layered metallurgy that inhibits transfer of adhesive thereto. The layered metallurgy includes at least one layer that is wettable to the solder. The multilayer contact may include a Nickel layer, a Copper layer upon the Nickel layer, and a Nickel-Iron layer upon the Copper layer. The multilayer contact may also include a Nickel layer, a Copper-Tin layer upon the Nickel layer, and a Tin layer upon the Copper-Tin layer.
Abstract:
Disclosed are electrodeposition systems and methods wherein at least three electrodes are placed in a container containing a plating solution. The electrodes are connected to a polarity-switching unit and include a first electrode, a second electrode and a third electrode. The polarity-switching unit establishes a constant polarity state between the first and second electrodes in the solution during an active plating mode, wherein the first electrode has a negative polarity and the second electrode has a positive polarity, thereby allowing a plated layer to form on a workpiece at the first electrode. The polarity-switching unit further establishes an oscillating polarity state between the second and third electrodes during a non-plating mode (i.e., when the first electrode is removed from the plating solution), wherein the second electrode and the third electrode have opposite polarities that switch at regular, relatively fast, intervals, thereby limiting degradation of the second electrode and/or the plating solution.