Abstract:
Disclosed are electrodeposition systems and methods wherein at least three electrodes are placed in a container containing a plating solution. The electrodes are connected to a polarity-switching unit and include a first electrode, a second electrode and a third electrode. The polarity-switching unit establishes a constant polarity state between the first and second electrodes in the solution during an active plating mode, wherein the first electrode has a negative polarity and the second electrode has a positive polarity, thereby allowing a plated layer to form on a workpiece at the first electrode. The polarity-switching unit further establishes an oscillating polarity state between the second and third electrodes during a non-plating mode (i.e., when the first electrode is removed from the plating solution), wherein the second electrode and the third electrode have opposite polarities that switch at regular, relatively fast, intervals, thereby limiting degradation of the second electrode and/or the plating solution.
Abstract:
A semiconductor device and a stacked pillar used to interconnect a first semiconductor die and a second semiconductor die are provided. The semiconductor device has a substrate, a splice interposer, a first semiconductor die, a second semiconductor die and first to fourth plurality of pillars. The first to fourth plurality of pillars and the splice interposer form interconnection and wiring between the first semiconductor die, the second semiconductor die and the substrate. The stacked pillar has a first conductor layer formed on a surface of the first semiconductor die, a first solder layer formed on the first conductor layer, a second conductor layer formed on the first solder layer, and a second solder layer formed on the second conductor layer. The second solder layer is heat-reflowable to attach the stacked pillar to a surface of the second semiconductor.
Abstract:
A three dimensional multi-die package includes a first die and second die. The first die includes a contact attached to solder. The second die is thinned by adhesively attaching a handler to a top side of the second die and thinning a bottom side of the second die. The second die includes a multilayer contact of layered metallurgy that inhibits transfer of adhesive thereto. The layered metallurgy includes at least one layer that is wettable to the solder. The multilayer contact may include a Nickel layer, a Copper layer upon the Nickel layer, and a Nickel-Iron layer upon the Copper layer. The multilayer contact may also include a Nickel layer, a Copper-Tin layer upon the Nickel layer, and a Tin layer upon the Copper-Tin layer.
Abstract:
Disclosed are electrodeposition systems and methods wherein at least three electrodes are placed in a container containing a plating solution. The electrodes are connected to a polarity-switching unit and include a first electrode, a second electrode and a third electrode. The polarity-switching unit establishes a constant polarity state between the first and second electrodes in the solution during an active plating mode, wherein the first electrode has a negative polarity and the second electrode has a positive polarity, thereby allowing a plated layer to form on a workpiece at the first electrode. The polarity-switching unit further establishes an oscillating polarity state between the second and third electrodes during a non-plating mode (i.e., when the first electrode is removed from the plating solution), wherein the second electrode and the third electrode have opposite polarities that switch at regular, relatively fast, intervals, thereby limiting degradation of the second electrode and/or the plating solution.
Abstract:
A three dimensional multi-die package includes a first die and second die. The first die includes a contact attached to solder. The second die is thinned by adhesively attaching a handler to a top side of the second die and thinning a bottom side of the second die. The second die includes a multilayer contact of layered metallurgy that inhibits transfer of adhesive thereto. The layered metallurgy includes at least one layer that is wettable to the solder. The multilayer contact may include a Nickel layer, a Copper layer upon the Nickel layer, and a Nickel-Iron layer upon the Copper layer. The multilayer contact may also include a Nickel layer, a Copper-Tin layer upon the Nickel layer, and a Tin layer upon the Copper-Tin layer.
Abstract:
Disclosed are electrodeposition systems and methods wherein at least three electrodes are placed in a container containing a plating solution. The electrodes are connected to a polarity-switching unit and include a first electrode, a second electrode and a third electrode. The polarity-switching unit establishes a constant polarity state between the first and second electrodes in the solution during an active plating mode, wherein the first electrode has a negative polarity and the second electrode has a positive polarity, thereby allowing a plated layer to form on a workpiece at the first electrode. The polarity-switching unit further establishes an oscillating polarity state between the second and third electrodes during a non-plating mode (i.e., when the first electrode is removed from the plating solution), wherein the second electrode and the third electrode have opposite polarities that switch at regular, relatively fast, intervals, thereby limiting degradation of the second electrode and/or the plating solution.
Abstract:
A method of interconnecting first and second semiconductor dies is provided. A splice interposer is attached to a top surface of a substrate through first pillars formed on a bottom surface of the splice interposer. The first semiconductor die is attached to the top surface of a substrate through second pillars formed on a bottom surface of the first semiconductor die. The first semiconductor die is attached to a top surface of the splice interposer through third pillars formed on the bottom surface of the first semiconductor. The second semiconductor die is attached to the top surface of the splice interposer through fourth pillars formed on a bottom surface of the second semiconductor die. The first to fourth plurality of pillars and the splice interposer form interconnection and wiring between the first semiconductor die, the second semiconductor die and the substrate.
Abstract:
Electronic devices including solder bumps embedded in a pre-applied coating of underfill material and/or solder resist are fabricated, thereby improving chip-package interaction reliability. Underfill can be directly applied to a wafer, enabling increased filler loadings. Passages formed in the underfill and/or solder resist coating expose electrically conductive pads or metal pillars. Such passages can be filled with molten solder to form the solder bumps.
Abstract:
Various embodiments include integrated circuit (IC) package structures. In some cases, an IC package includes: a carrier having a recess; a plurality of IC chips coupled with the carrier inside the recess, the plurality of IC chips each including a plurality of connectors; a thermally conductive material between the plurality of IC chips and the carrier within the recess, the thermally conductive material coupling the plurality of IC chips with the carrier; a dielectric layer contacting the plurality of IC chips and the carrier; a redistribution layer (RDL) contacting the dielectric layer and the plurality of connectors, the RDL including a plurality of fan-out vias extending from the plurality of connectors and at least one connector coupling adjacent IC chips in the plurality of IC chips; and a set of solder balls contacting the RDL and connected with the plurality of fan-out vias.
Abstract:
A method of forming a stacked surface arrangement for semiconductor devices includes joining a first surface to a second surface with a solder bump, the solder bump including a substantially pure first metal; depositing nanoparticles of a second metal onto a surface of the solder bump; performing an annealing operation to form a film of the second metal on the surface of the solder bump; and performing a reflow or a second annealing operation to transform the solder bump from the substantially pure first metal to an alloy of the first metal and the second metal.