Abstract:
A method for semiconductor fabrication includes providing channel regions on a substrate including at least one Silicon Germanium (SiGe) channel region, the substrate including a plurality of regions including a first region and a second region. Gate structures are formed for a first n-type field effect transistor (NFET) and a first p-type field effect transistor (PFET) in the first region and a second NFET and a second PFET in the second region, the gate structure for the first PFET being formed on the SiGe channel region. The gate structure for the first NFET includes a gate material having a first work function and the gate structures for the first PFET, second NFET and second PFET include a gate material having a second work function such that multi-threshold voltage devices are provided.
Abstract:
This disclosure relates to a method of forming nanosheet devices including: forming a first and second nanosheet stack on a substrate, the first and the second nanosheet stacks including a plurality of vertically spaced nanosheets disposed on the substrate and separated by a plurality of spacing members, each of the plurality of spacing members including a sacrificial layer and a pair of inner spacers formed on lateral ends of the sacrificial layer; growing a pair of epitaxial regions adjacent to the first and second nanosheet stacks from each of the plurality of nanosheets such that each of the plurality of inner spacers is enveloped by one of the epitaxial regions; covering the first nanosheet stack with a mask; and forming a pair of p-type source/drain regions on the second nanosheet stack, each of the pair of p-type source/drain regions being adjacent to the epitaxial regions on the second nanosheet stack.
Abstract:
Methods and semiconductor structures formed from the methods are provided which facilitate fabricating semiconductor fin structures. The methods include, for example: providing a wafer with at least one semiconductor fin extending above a substrate; transforming a portion of the semiconductor fin(s) into an isolation layer, the isolation layer separating a semiconductor layer of the semiconductor fin(s) from the substrate; and proceeding with forming a fin device(s) of a first architectural type in a first fin region of the semiconductor fin(s), and a fin device(s) of a second architectural type in a second fin region of the semiconductor fin(s), where the first architectural type and the second architectural type are different fin device architectures.
Abstract:
Methods and structures for forming fully insulated finFETs beginning with a bulk semiconductor substrate are described. Fin structures for finFETs may be formed in two epitaxial layers that are grown over a bulk substrate. A first epitaxial layer may be sacrificial. A final gate structure may be formed around the fin structures, and the first epitaxial layer removed to form a void between a fin and the substrate. The void may be filled with an insulator to fully insulate the fin.
Abstract:
Structures for a field-effect transistor and methods of forming structures for a field-effect transistor. A plurality of channel layers are arranged in a layer stack, and a source/drain region is connected with the plurality of channel layers. A gate structure includes a plurality of sections that respectively surround the plurality of channel layers. The plurality of channel layers contain a two-dimensional semiconducting material.
Abstract:
Tapered source and drain contacts for use in an epitaxial FinFET prevent short circuits and damage to parts of the FinFET during contact processing, thus improving device reliability. The inventive contacts feature tapered sidewalls and a pedestal where electrical contact is made to fins in the source and drain regions. The pedestal also provides greater contact area to the fins, which are augmented by extensions. Raised isolation regions define a valley around the fins. During source/drain contact formation, the valley is lined with a conformal barrier that also covers the fins themselves. The barrier protects underlying local oxide and adjacent isolation regions against gouging while forming the contact. The valley is filled with an amorphous silicon layer that protects the epitaxial fin material from damage during contact formation. A simple tapered structure is used for the gate contact.
Abstract:
A method for semiconductor fabrication includes providing channel regions on a substrate including at least one Silicon Germanium (SiGe) channel region, the substrate including a plurality of regions including a first region and a second region. Gate structures are formed for a first n-type field effect transistor (NFET) and a first p-type field effect transistor (PFET) in the first region and a second NFET and a second PFET in the second region, the gate structure for the first PFET being formed on the SiGe channel region. The gate structure for the first NFET includes a gate material having a first work function and the gate structures for the first PFET, second NFET and second PFET include a gate material having a second work function such that multi-threshold voltage devices are provided.
Abstract:
One illustrative method disclosed herein involves, among other things, forming trenches to form an initial fin structure having an initial exposed height and sidewalls, forming a protection layer on at least the sidewalls of the initial fin structure, extending the depth of the trenches to thereby define an increased-height fin structure, with a layer of insulating material over-filling the final trenches and with the protection layer in position, performing a fin oxidation thermal anneal process to convert at least a portion of the increased-height fin structure into an isolation material, removing the protection layer, and performing an epitaxial deposition process to form a layer of semiconductor material on at least portions of the initial fin structure.
Abstract:
A method for semiconductor fabrication includes providing channel regions on a substrate including at least one Silicon Germanium (SiGe) channel region, the substrate including a plurality of regions including a first region and a second region. Gate structures are formed for a first n-type field effect transistor (NFET) and a first p-type field effect transistor (PFET) in the first region and a second NFET and a second PFET in the second region, the gate structure for the first PFET being formed on the SiGe channel region. The gate structure for the first NFET includes a gate material having a first work function and the gate structures for the first PFET, second NFET and second PFET include a gate material having a second work function such that multi-threshold voltage devices are provided.
Abstract:
One illustrative method disclosed herein involves, among other things, forming trenches to form an initial fin structure having an initial exposed height and sidewalls, forming a protection layer on at least the sidewalls of the initial fin structure, extending the depth of the trenches to thereby define an increased-height fin structure, with a layer of insulating material over-filling the final trenches and with the protection layer in position, performing a fin oxidation thermal anneal process to convert at least a portion of the increased-height fin structure into an isolation material, removing the protection layer, and performing an epitaxial deposition process to form a layer of semiconductor material on at least portions of the initial fin structure.