DNA SEQUENCING USING MULTIPLE METAL LAYER STRUCTURE WITH DIFFERENT ORGANIC COATINGS FORMING DIFFERENT TRANSIENT BONDINGS TO DNA
    15.
    发明申请
    DNA SEQUENCING USING MULTIPLE METAL LAYER STRUCTURE WITH DIFFERENT ORGANIC COATINGS FORMING DIFFERENT TRANSIENT BONDINGS TO DNA 审中-公开
    使用多种金属层结构与不同有机涂层形成不同瞬态结合到DNA的DNA序列

    公开(公告)号:US20170059548A1

    公开(公告)日:2017-03-02

    申请号:US15349285

    申请日:2016-11-11

    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.

    Abstract translation: 纳米器件包括填充有导电流体的储存器和分离储存器的膜。 通过具有由绝缘层分隔的电极层的膜形成纳米孔。 某一电极层具有第一类型的有机涂层,并且一对电极层具有第二类型。 第一类型的有机涂层形成运动控制瞬态键合到用于运动控制的纳米孔中的一个分子,而第二种类型形成与分子的基底的不同键合位点的第一和第二瞬态键。 当对一对电极层施加电压时,由纳米孔中的基底产生隧穿电流,并且隧穿电流通过形成为待测量的第一和第二瞬态键作为用于区分基极的电流签名行进。 运动控制瞬态键比第一和第二瞬态键强。

    Fabrication of tunneling junction for nanopore DNA sequencing
    17.
    发明授权
    Fabrication of tunneling junction for nanopore DNA sequencing 有权
    纳米孔DNA测序隧道结的制备

    公开(公告)号:US09222930B2

    公开(公告)日:2015-12-29

    申请号:US13971532

    申请日:2013-08-20

    Abstract: A mechanism is provided for forming a nanodevice. A reservoir is filled with a conductive fluid, and a membrane is formed to separate the reservoir in the nanodevice. The membrane includes an electrode layer having a tunneling junction formed therein. The membrane is formed to have a nanopore formed through one or more other layers of the membrane such that the nanopore is aligned with the tunneling junction of the electrode layer. The tunneling junction of the electrode layer is narrowed to a narrowed size by electroplating or electroless deposition. When a voltage is applied to the electrode layer, a tunneling current is generated by a base in the tunneling junction to be measured as a current signature for distinguishing the base. When an organic coating is formed on an inside surface of the tunneling junction, transient bonds are formed between the electrode layer and the base.

    Abstract translation: 提供了用于形成纳米器件的机构。 储存器填充有导电流体,并且形成膜以分离纳米装置中的储存器。 膜包括其中形成有隧道结的电极层。 膜形成为具有通过膜的一个或多个其它层形成的纳米孔,使得纳米孔与电极层的隧道结对准。 电极层的隧道结通过电镀或无电沉积而变窄到窄的尺寸。 当向电极层施加电压时,通过在要测量的隧道结中的基底产生隧道电流作为区分基底的当前签名。 当在隧道结的内表面上形成有机涂层时,在电极层和基底之间形成瞬态结合。

    Integrated nanowire/nanosheet nanogap and nanopore for DNA and RNA sequencing
    18.
    发明授权
    Integrated nanowire/nanosheet nanogap and nanopore for DNA and RNA sequencing 有权
    用于DNA和RNA测序的纳米纳米片和纳米孔纳米孔

    公开(公告)号:US08975095B2

    公开(公告)日:2015-03-10

    申请号:US13904403

    申请日:2013-05-29

    Abstract: A technique is provided for base recognition in an integrated device is provided. A target molecule is driven into a nanopore of the integrated device. The integrated device includes a nanowire separated into a left nanowire part and a right nanowire part to form a nanogap in between, a source pad connected to the right nanowire part, a drain pad connected to the left nanowire part, and the nanopore. The source pad, the drain pad, the right nanowire part, the left nanowire part, and the nanogap together form a transistor. The nanogap is part of the nanopore. A transistor current is measured while a single base of the target molecule is in the nanogap of the nanopore, and the single base affects the transistor current. An identity of the single base is determined according to a change in the transistor current.

    Abstract translation: 提供了一种用于集成设备中的基础识别的技术。 靶分子被驱动到集成器件的纳米孔中。 集成器件包括分离成左纳米线部分的纳米线和右纳米线部分,以在其间形成纳米间隙,连接到右纳米线部分的源极焊盘,连接到左纳米线部分的漏极焊盘和纳米孔。 源极焊盘,漏极焊盘,右侧的纳米线部分,左侧的纳米线部分和纳米光栅一起形成晶体管。 纳米孔是纳米孔的一部分。 测量晶体管电流,同时目标分子的单个碱基位于纳米孔的纳米隙中,单个碱基影响晶体管电流。 根据晶体管电流的变化确定单个基极的身份。

    INTEGRATED NANOWIRE/NANOSHEET NANOGAP AND NANOPORE FOR DNA AND RNA SEQUENCING
    20.
    发明申请
    INTEGRATED NANOWIRE/NANOSHEET NANOGAP AND NANOPORE FOR DNA AND RNA SEQUENCING 有权
    综合纳米/纳米NAPNA和纳米级DNA和RNA序列

    公开(公告)号:US20140326604A1

    公开(公告)日:2014-11-06

    申请号:US13904403

    申请日:2013-05-29

    Abstract: A technique is provided for base recognition in an integrated device is provided. A target molecule is driven into a nanopore of the integrated device. The integrated device includes a nanowire separated into a left nanowire part and a right nanowire part to form a nanogap in between, a source pad connected to the right nanowire part, a drain pad connected to the left nanowire part, and the nanopore. The source pad, the drain pad, the right nanowire part, the left nanowire part, and the nanogap together form a transistor. The nanogap is part of the nanopore. A transistor current is measured while a single base of the target molecule is in the nanogap of the nanopore, and the single base affects the transistor current. An identity of the single base is determined according to a change in the transistor current.

    Abstract translation: 提供了一种用于集成设备中的基础识别的技术。 靶分子被驱动到集成器件的纳米孔中。 集成器件包括分离成左纳米线部分的纳米线和右纳米线部分,以在其间形成纳米间隙,连接到右纳米线部分的源极焊盘,连接到左纳米线部分的漏极焊盘和纳米孔。 源极焊盘,漏极焊盘,右侧的纳米线部分,左侧的纳米线部分和纳米光栅一起形成晶体管。 纳米孔是纳米孔的一部分。 测量晶体管电流,同时目标分子的单个碱基位于纳米孔的纳米隙中,单个碱基影响晶体管电流。 根据晶体管电流的变化确定单个基极的身份。

Patent Agency Ranking