Abstract:
A technique relates sorting biopolymers. The biopolymers are introduced into a nanopillar array, and the biopolymers include a first population and a second population. The nanopillar array includes nanopillars arranged to have a gap separating one from another. The biopolymers are sorted through the nanopillar array by transporting the first population of the biopolymers less than a predetermined bumping size according to a fluid flow direction and by transporting the second population of the biopolymers at least the predetermined bumping size according to a bumped direction different from the fluid flow direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the biopolymers.
Abstract:
A technique relates sorting biopolymers. The biopolymers are introduced into a nanopillar array, and the biopolymers include a first population and a second population. The nanopillar array includes nanopillars arranged to have a gap separating one from another. The biopolymers are sorted through the nanopillar array by transporting the first population of the biopolymers less than a predetermined bumping size according to a fluid flow direction and by transporting the second population of the biopolymers at least the predetermined bumping size according to a bumped direction different from the fluid flow direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the biopolymers.
Abstract:
Embodiments of the present invention may provide the capability to predict the metastasis of cancer in a patient from one tissue to another. In an embodiment, a computer-implemented method for predicting metastasis may comprise receiving an indication of at least one disrupted gene of the cancer, traversing data representing a gene-to-gene or protein-to-protein interaction network specific for a type of the cancer type from a position of the received gene in the network to a position of at least one gene involved in metastasis for a tissue type, organ or body part, determining at least one shortest path in the network between the received gene and the at least one gene involved in metastasis for the tissue type, organ or body part, generating a prediction of metastasis to the tissue type based on the at least one determined path, and generating an output display indicating a likelihood of spread of cancer to the tissue type, organ or body part.
Abstract:
A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
Abstract:
A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
Abstract:
A technique relates sorting biopolymers. The biopolymers are introduced into a nanopillar array, and the biopolymers include a first population and a second population. The nanopillar array includes nanopillars arranged to have a gap separating one from another. The biopolymers are sorted through the nanopillar array by transporting the first population of the biopolymers less than a predetermined bumping size according to a fluid flow direction and by transporting the second population of the biopolymers at least the predetermined bumping size according to a bumped direction different from the fluid flow direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the biopolymers.
Abstract:
A mechanism is provided for forming a nanodevice. A reservoir is filled with a conductive fluid, and a membrane is formed to separate the reservoir in the nanodevice. The membrane includes an electrode layer having a tunneling junction formed therein. The membrane is formed to have a nanopore formed through one or more other layers of the membrane such that the nanopore is aligned with the tunneling junction of the electrode layer. The tunneling junction of the electrode layer is narrowed to a narrowed size by electroplating or electroless deposition. When a voltage is applied to the electrode layer, a tunneling current is generated by a base in the tunneling junction to be measured as a current signature for distinguishing the base. When an organic coating is formed on an inside surface of the tunneling junction, transient bonds are formed between the electrode layer and the base.
Abstract:
A technique is provided for base recognition in an integrated device is provided. A target molecule is driven into a nanopore of the integrated device. The integrated device includes a nanowire separated into a left nanowire part and a right nanowire part to form a nanogap in between, a source pad connected to the right nanowire part, a drain pad connected to the left nanowire part, and the nanopore. The source pad, the drain pad, the right nanowire part, the left nanowire part, and the nanogap together form a transistor. The nanogap is part of the nanopore. A transistor current is measured while a single base of the target molecule is in the nanogap of the nanopore, and the single base affects the transistor current. An identity of the single base is determined according to a change in the transistor current.
Abstract:
A mixed polynucleotide includes a first double stranded (ds) portion, a second portion including at least one single stranded (ss) portion, and a third ds portion. The second portion connects the first ds portion and the third ds portion to provide a modified polynucleotide.
Abstract:
A technique is provided for base recognition in an integrated device is provided. A target molecule is driven into a nanopore of the integrated device. The integrated device includes a nanowire separated into a left nanowire part and a right nanowire part to form a nanogap in between, a source pad connected to the right nanowire part, a drain pad connected to the left nanowire part, and the nanopore. The source pad, the drain pad, the right nanowire part, the left nanowire part, and the nanogap together form a transistor. The nanogap is part of the nanopore. A transistor current is measured while a single base of the target molecule is in the nanogap of the nanopore, and the single base affects the transistor current. An identity of the single base is determined according to a change in the transistor current.