Abstract:
The present invention includes a fundamental laser light source configured to generate fundamental wavelength laser light, a first nonlinear optical crystal configured to generate first alternate wavelength light, a second nonlinear optical crystal configured to generate second alternate wavelength light, a set of Brewster angle wavefront processing optics configured to condition the first and second alternate wavelengths of light, and a harmonic separator configured to receive the first alternate wavelength light and the second alternate wavelength light from the set of Brewster angle wavefront processing optics, the harmonic separator configured to at least partially separate the first alternate wavelength light from the second alternate wavelength light.
Abstract:
A laser assembly for generating laser output light at an output wavelength of approximately 183 nm includes a fundamental laser, an optical parametric system (OPS), a fifth harmonic generator, and a frequency mixing module. The fundamental laser generates fundamental light at a fundamental frequency. The OPS generates a down-converted signal at a down-converted frequency. The fifth harmonic generator generates a fifth harmonic of the fundamental light. The frequency mixing module mixes the down-converted signal and the fifth harmonic to produce the laser output light at a frequency equal to a sum of the fifth harmonic frequency and the down-converted frequency. The OPS generates the down-converted signal by generating a down-converted seed signal at the down-converted frequency, and then mixing the down-converted seed signal with a portion of the fundamental light. At least one of the frequency mixing, frequency conversion or harmonic generation utilizes an annealed, deuterium-treated or hydrogen-treated CLBO crystal.
Abstract:
A repetition rate (pulse) multiplier includes one or more beam splitters and prisms forming one or more ring cavities with different optical path lengths that delay parts of the energy of each pulse. A series of input laser pulses circulate in the ring cavities and part of the energy of each pulse leaves the system after traversing the shorter cavity path, while another part of the energy leaves the system after traversing the longer cavity path, and/or a combination of both cavity paths. By proper choice of the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitters. Some embodiments generate a time-averaged output beam profile that is substantially flat in one dimension.
Abstract:
A pulse multiplier includes a beam splitter and one or more mirrors. The beam splitter receives a series of input laser pulses and directs part of the energy of each pulse into a ring cavity. After circulating around the ring cavity, part of the pulse energy leaves the ring cavity through the beam splitter and part of the energy is recirculated. By selecting the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitter. This pulse multiplier can inexpensively reduce the peak power per pulse while increasing the number of pulses per second with minimal total power loss.
Abstract:
A laser for generating an output wavelength of approximately 193.4 nm includes a fundamental laser, an optical parametric generator, a fourth harmonic generator, and a frequency mixing module. The optical parametric generator, which is coupled to the fundamental laser, can generate a down-converted signal. The fourth harmonic generator, which may be coupled to the optical parametric generator or the fundamental laser, can generate a fourth harmonic. The frequency mixing module, which is coupled to the optical parametric generator and the fourth harmonic generator, can generate a laser output at a frequency equal to a sum of the fourth harmonic and twice a frequency of the down-converted signal.
Abstract:
An exemplary illumination source for an inspection system includes a pulsed seed laser having a wavelength of approximately 1104 nm and a continuous wave, Raman seed laser having a wavelength of approximately 1160 nm. An optical coupler can combine outputs of the pulsed seed laser and the continuous wave, Raman seed laser. Pre-amplification stages can receive an output of the optical coupler. A power amplifier can receive an output of the pre-amplification stages. A sixth harmonic can be generated using the amplified, combined wavelength. Systems for inspecting a specimen such as a reticle, photomask or wafer can include one of the illumination sources described herein.
Abstract:
Improved laser systems and associated techniques generate an ultra-violet (UV) wavelength of approximately 193.368 nm from a fundamental vacuum wavelength near 1064 nm. Preferred embodiments separate out an unconsumed portion of an input wavelength to at least one stage and redirect that unconsumed portion for use in another stage. The improved laser systems and associated techniques result in less expensive, longer life lasers than those currently being used in the industry. These laser systems can be constructed with readily-available, relatively inexpensive components.
Abstract:
A pulse multiplier includes a polarizing beam splitter, a wave plate, and a set of multi-surface reflecting components (e.g., one or more etalons and one or more mirrors). The polarizing beam splitter passes input laser pulses through the wave plate to the multi-surface reflecting components, which reflect portions of each input laser pulse back through the wave plate to the polarizing beam splitter. The polarizing beam splitter reflects each reflected portion to form an output of the pulse multiplier. The multi-surface reflecting components are configured such that the output pulses exiting the pulse multiplier have an output repetition pulse frequency rate that is at least double the input repetition pulse frequency.
Abstract:
A repetition rate (pulse) multiplier includes one or more beam splitters and prisms forming one or more ring cavities with different optical path lengths that delay parts of the energy of each pulse. A series of input laser pulses circulate in the ring cavities and part of the energy of each pulse leaves the system after traversing the shorter cavity path, while another part of the energy leaves the system after traversing the longer cavity path, and/or a combination of both cavity paths. By proper choice of the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitters. Some embodiments generate a time-averaged output beam profile that is substantially flat in one dimension.
Abstract:
A pulse multiplier includes a beam splitter and one or more mirrors. The beam splitter receives a series of input laser pulses and directs part of the energy of each pulse into a ring cavity. After circulating around the ring cavity, part of the pulse energy leaves the ring cavity through the beam splitter and part of the energy is recirculated. By selecting the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitter. This pulse multiplier can inexpensively reduce the peak power per pulse while increasing the number of pulses per second with minimal total power loss.