Abstract:
Disclosed is a heterojunction semiconductor flexible substrate in which an epitaxial oxide thin film layer is hetero-bonded to a thinned silicon substrate using a metal layer, a manufacturing method thereof, and the heterojunction semiconductor flexible substrate can be applied to sensor, actuator, transducer, or micro electro mechanical systems (MEMS) device using high functionality of the epitaxial oxide thin film layer of high quality as well as an electronic and/or optical device.
Abstract:
A semiconductor substrate with oxide single crystal heterostructures, to which a sacrificial layer, an epitaxy functional oxide thin film having a perovskite structure and a metal layer are grown on an oxide single crystal substrate, prepared another metal layer on a semiconductor substrate, and bonded the metal layer of the oxide single crystal substrate to the metal layer of the semiconductor substrate to be face each other, and separated the oxide single crystal substrate by selectively etching and removing only the sacrificial layer after the bonding.
Abstract:
The present disclosure provides a transparent thin film heater including: a metal layer; and a transparent conductive oxide layer, wherein the transparent conductive oxide layer includes a composition represented by the following Chemical Formula 1 and is doped with nitrogen: ZnxSn1−xO2 [Chemical Formula 1] wherein 0
Abstract:
Disclosed is a transparent anode thin film comprising a transparent anode active material layer, wherein the transparent anode active material layer comprises a Si-based anode active material having a composition represented by the following [Chemical Formula 1]: SiNx [Chemical Formula 1] (wherein 0
Abstract:
Disclosed herein is a smart wearable lens mounted with an all-solid-state thin film secondary battery including a flexible substrate, a cathode current collector, a cathode, a solid electrolyte, an anode, and an anode current collector. The smart wearable lens mounted with the all-solid-state thin film secondary battery may be stably and continuously supplied with power and has a low self-discharge rate. In addition, the smart wearable lens may minimize aversion when humans are wearing the smart wearable lens and be suitably used for a curved lens, especially a micro-lens such as a contact lens.
Abstract:
A capacitor for a semiconductor memory element includes a lower electrode, a dielectric layer disposed on the lower electrode and including titanium oxide, and an upper electrode disposed on the dielectric layer. The lower electrode includes a first metal and a second metal, the first metal including at least one selected from the group consisting of platinum (Pt), osmium (Os), rhodium (Rh) and palladium (Pd), the second metal including at least one selected from the group consisting of ruthenium (Ru) and iridium (Ir).
Abstract:
A method of fabricating a cathode for a thin film battery includes depositing a cathode active material on a substrate, and crystallizing the cathode active material by irradiating laser onto the cathode active material. The cathode active material may be deposited on the substrate at normal temperature, and a light and easily processable polymer substrate may be used by crystallizing the cathode active material at low temperature using laser. A thin film battery including the cathode fabricated by the above method has excellent charging/discharging characteristics such as high discharge capacity.