摘要:
A high energy rare earth-ferromagnetic metal permanent magnet is disclosed which is characterized by improved intrinsic coercivity and is made by forming a particulate mixture of a permanent magnet alloy comprising one or more rare earth elements and one or more ferromagnetic metals and forming a second particulate mixture of a sintering alloy consisting essentially of 92-98 wt. % of one or more rare earth elements selected from the class consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and mixtures of two or more of such rare earth elements, and 2-8 wt. % of one or more alloying metals selected from the class consisting of Al, Nb, Zr, V, Ta, Mo, and mixtures of two or more of such metals. The permanent magnet alloy particles and sintering aid alloy are mixed together and magnetically oriented by immersing the mixture in an axially aligned magnetic field while cold pressing the mixture. The compressed mixture is then sintered at a temperature above the melting point of the sintering aid and below the melting point of the permanent magnet alloy to thereby coat the particle surfaces of the permanent magnetic alloy particles with the sintering aid while inhibiting migration of the rare earth element in the sintering aid into the permanent magnet alloy particles to thereby raise the intrinsic coercivity of the permanent magnet alloy without substantially lowering the high energy of the permanent magnet alloy.
摘要:
The present invention provides for a composition comprising a thin film of BiFeO3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO3 thin film, and a second electrode in contact with the BiFeO3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.
摘要:
The present invention provides for a composition comprising a thin film of BiFeO3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO3 thin film, and a second electrode in contact with the BiFeO3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.
摘要:
A ferroelectric memory cell formed on a monocrystalline silicon underlayer, either an epitaxial silicon contact plug to a transistor source or drain or silicon gate region for which the memory cell forms a non-volatile gate. A conductive barrier layer of vanadium or niobium substituted strontium titanate is epitaxially grown over the silicon, and a lower metal oxide electrode layer, a ferroelectric layer and an upper metal oxide electrode layer are epitaxially grown on the barrier layer. No platinum barrier is needed beneath the ferroelectric stack. The invention can be applied to many other functional oxide devices including micromachined electromechanical (MEM) devices and ferromagnetic tri-layer devices.
摘要:
A high quality epitaxial layer of monocrystalline Pb(Mg,Nb)O3—PbTiO3 or Pb(Mg1−xNbx)O3—PbTiO3 can be grown overlying large silicon wafers by first growing an strontium titanate layer on a silicon wafer. The strontium titanate layer is a monocrystalline layer spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide.
摘要:
A method, and the resulting structure, of growing a superconducting perovskite thin film of, for example YBa.sub.2 Cu.sub.3 O.sub.7-x. A buffer layer of, for example, the perovskite PrBa.sub.2 Cu.sub.3 O.sub.7-y, is grown on a crystalline (001) substrate under conditions which favor growth of a,b-axis oriented material. Then the YBa.sub.2 Cu.sub.3 O.sub.7-x layer is deposited on the buffer layer under changed growth conditions that favor growth of c-axis oriented material on the substrate, for example, the substrate temperature is raised by 110.degree. C. However, the buffer layer acts as a template that forces the growth of a,b-axis YBa.sub.2 Cu.sub.3 O.sub.7-x, which nonetheless shows a superconducting transition temperature near that of c-axis oriented films.
摘要:
Magnetoelectric spin-orbit logic (MESO) devices comprise a magnetoelectric switch capacitor coupled to a spin-orbit coupling structure. The logic state of the MESO device is represented by the magnetization orientation of the ferromagnet of the magnetoelectric switch capacitor and the spin-orbit coupling structure converts the magnetization orientation of the ferromagnet to an output current. MESO devices in which all or at least some of the constituent layers of the device are perovskite materials can provide advantages such as improved control over the manufacturing of MESO devices and high quality interfaces between MESO layers due to the lattice matching of perovskite materials.
摘要:
The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.
摘要:
A functional perovskite cell formed on a silicon substrate layer and including a functional layer of bismuth ferrite (BiFeO3 or BFO) sandwiched between two electrode layers. An optional intermediate template layer, for example, of strontium titanate allows the bismuth ferrite layer to be crystallographically aligned with the silicon substrate layer. Other barrier layers of platinum or an intermetallic alloy produce a polycrystalline BFO layer. The cell may be configured as a non-volatile memory cell or a MEMS structure respectively depending upon the ferroelectric and piezoelectric character of BFO. Lanthanum substitution in the BFO increases ferroelectric performance. The films may be grown by MOCVD using a heated vaporizer.
摘要翻译:形成在硅衬底层上并且包含夹在两个电极层之间的铋铁氧体(BiFeO 3 N 3或BFO)的功能层的功能性钙钛矿电池。 可选的中间模板层例如钛酸锶允许铋铁氧体层与硅衬底层晶体学对准。 铂或金属间化合物的其它阻挡层产生多晶BFO层。 可以根据BFO的铁电和压电特性分别将单元配置为非易失性存储单元或MEMS结构。 BFO中的镧取代增加了铁电性能。 可以使用加热蒸发器通过MOCVD生长膜。
摘要:
A ferroelectric memory cell formed on a monocrystalline silicon underlayer, either an epitaxial silicon contact plug to a transistor source or drain or silicon gate region for which the memory cell forms a non-volatile gate. A conductive barrier layer of doped strontium titanate, whether cationically substituted, such by lanthanum or niobium for strontium and titanium respectively, or anionically deficient, is epitaxially grown over the silicon, and a lower metal oxide electrode layer, a ferroelectric layer and an upper metal oxide electrode layer are epitaxially grown on the barrier layer. No platinum barrier is needed beneath the ferroelectric stack. The invention can be applied to many other functional oxide materials of the Ruddlesden-Popper and devices including micromachined electromechanical (MEM) devices and ferromagnetic tri-layer devices.