Abstract:
An image inspection method of die to database is provided, and the positions in the to-be-inspected chips within one wafer may be selected. In the method, a plurality of inspection areas in a plurality of positions in the to-be-inspected chips within a wafer are selected, a plurality of raw images of the inspection areas are obtained, and a plurality of locations of the raw images are then decoded. After that, an image extraction is performed on the raw images to obtain a plurality of image contours. Thereafter, the image contours are compared with a design database of the chip in order to obtain a result of a defect inspection, and execute the same thing in whole wafer.
Abstract:
Provided is a semiconductor memory device including a substrate, a plurality of first isolation structures, and a plurality of second isolation structures. The substrate includes a periphery region and an array region. The first isolation structures are located in the substrate of the periphery region. The second isolation structures are located in the substrate of the array region. A material of the first isolation structures is different from a material of the second isolation structures. A width of each of the first isolation structures is greater than a width of each of the second isolation structures.
Abstract:
A method for detecting defects of wafer by wafer sort is introduced. In the method, a wafer sort testing apparatus is used to obtain a DTL or ADART result, wherein a plurality of repaired sites in a wafer is highlighted according to the DTL or ADART result. A plurality of physical locations of the repaired sites is then output. An analysis equipment is used to match the physical locations with a graphic data system (GDS) design layout coordinate of the wafer so as to generate a data correlating with defects at the repaired sites.
Abstract:
A method for detecting an electrical defect of contact/via plugs is provided. In the method, the contact/via plugs are monitored by an electron-beam (E-Beam) inspection tool to capture an image with a VC (voltage contrast) difference, and then an image extraction is performed on the image with the VC difference, wherein the image extraction is based on Target gray level/back ground gray level. The extracted image is contrasted with a layout design base to obtain a blind contact or Quasi-blind issue of contact/via plugs. A grayscale value of the VC difference having the blind contact or Quasi-blind issue is compared with a determined range of grayscale value to determine whether the VC difference is abnormal.
Abstract:
A transistor structure including a substrate, a gate structure, first pocket doped regions, second pocket doped regions, and source/drain extension regions, and source/drain regions is provided. The gate structure is located on the substrate. The first pocket doped regions are located in the substrate aside the gate structure. A dopant of the first pocket doped region includes a group IVA element. The second pocket doped regions are located in the substrate aside the gate structure. A depth of the second pocket doped region is greater than a depth of the first pocket doped region. The source/drain extension regions are located in the first pocket doped regions. The source/drain regions are located in the substrate aside the gate structure. The source/drain extension region is located between the source/drain region and the gate structure.
Abstract:
Provided is a semiconductor memory device including a substrate, a plurality of first isolation structures, and a plurality of second isolation structures. The substrate includes a periphery region and an array region. The first isolation structures are located in the substrate of the periphery region. The second isolation structures are located in the substrate of the array region. A material of the first isolation structures is different from a material of the second isolation structures. A width of each of the first isolation structures is greater than a width of each of the second isolation structures.
Abstract:
An electron beam (E beam) inspection optimization is provided, in which a plurality of initial inspection regions in a chip are obtained, wherein a center of each of the initial inspection regions is a defect point. Thereafter, reset inspection regions are regenerated without overlap, wherein each of the reset inspection regions is within a scope covered by a field of view (FOV) and the scope contains at least one of the defect points. Afterwards, a center of the reset inspection region is transferred into an inspection center, and then an E beam inspection is performed on the inspection center.
Abstract:
An electron beam (E beam) inspection optimization is provided, in which a plurality of initial inspection regions in a chip are obtained, wherein a center of each of the initial inspection regions is a defect point. Thereafter, reset inspection regions are regenerated without overlap, wherein each of the reset inspection regions is within a scope covered by a field of view (FOV) and the scope contains at least one of the defect points. Afterwards, a center of the reset inspection region is transferred into an inspection center, and then an E beam inspection is performed on the inspection center.
Abstract:
A method for measuring a surface structure of a chip or a wafer is provided that includes obtaining an image of the surface structure of the chip, and then performing an image extraction on the image to convert the extracted image into a first circuit design file. A standard image is selected to convert into a second circuit design file, and then the standard image and at least one target in the image are compared to obtain a difference therebetween. According to the difference, at least one data of the surface structure may be made, wherein the data is selected from one of line edge roughness (LER), line width roughness (LWR), contact edge roughness (CER), critical dimension (CD), bias, 3 sigma, maximum, minimum, etc. and repeating defect.
Abstract:
A blocking semiconductor layer minimizes penetration of implant species into a semiconductor layer beneath the blocking semiconductor layer. The blocking semiconductor layer may have grains with relatively fine or small grain sizes and/or may have a dopant in a relatively low concentration to minimize penetration of implant species into the semiconductor layer beneath the blocking semiconductor layer.