Abstract:
A device is disclosed which includes, in one illustrative example, an integrated circuit die having an active surface and a molded body extending around a perimeter of the die, the molded body having lips that are positioned above a portion of the active surface of the die. Another illustrative example includes an integrated circuit die having an active surface, a molded body extending around a perimeter of the die and a CTE buffer material formed around at least a portion of the perimeter of the die adjacent the active surface of the die, wherein the CTE buffer material is positioned between a portion of the die and a portion of the molded body and wherein the CTE buffer material has a coefficient of thermal expansion that is intermediate a coefficient of thermal expansion for the die and a coefficient of thermal expansion for the molded body.
Abstract:
A device is disclosed which includes, in one illustrative example, an integrated circuit die having an active surface and a molded body extending around a perimeter of the die, the molded body having lips that are positioned above a portion of the active surface of the die. Another illustrative example includes an integrated circuit die having an active surface, a molded body extending around a perimeter of the die and a CTE buffer material formed around at least a portion of the perimeter of the die adjacent the active surface of the die, wherein the CTE buffer material is positioned between a portion of the die and a portion of the molded body and wherein the CTE buffer material has a coefficient of thermal expansion that is intermediate a coefficient of thermal expansion for the die and a coefficient of thermal expansion for the molded body.
Abstract:
A semiconductor device assembly includes a substrate having a plurality of external connections, a first stack of semiconductor dies disposed directly over a first location on the substrate and electrically coupled to a first subset of the plurality of external connections, and a second stack of semiconductor dies disposed directly over a second location on the substrate and electrically coupled to a second subset of the plurality of external connections. A portion of the semiconductor dies of the second stack overlaps a portion of the semiconductor dies of the first stack. The semiconductor device assembly further includes an encapsulant at least partially encapsulating the substrate, the first stack and the second stack.
Abstract:
A device is disclosed which includes, in one illustrative example, an integrated circuit die having an active surface and a molded body extending around a perimeter of the die, the molded body having lips that are positioned above a portion of the active surface of the die. Another illustrative example includes an integrated circuit die having an active surface, a molded body extending around a perimeter of the die and a CTE buffer material formed around at least a portion of the perimeter of the die adjacent the active surface of the die, wherein the CTE buffer material is positioned between a portion of the die and a portion of the molded body and wherein the CTE buffer material has a coefficient of thermal expansion that is intermediate a coefficient of thermal expansion for the die and a coefficient of thermal expansion for the molded body.
Abstract:
Stacked semiconductor die assemblies with die support members and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a package substrate, a first semiconductor die attached to the package substrate, and a support member attached to the package substrate. The support member can be separated from the first semiconductor die, and a second semiconductor die can have one region coupled to the support member and another region coupled to the first semiconductor die.
Abstract:
Stacked semiconductor die assemblies with die support members and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a package substrate, a first semiconductor die attached to the package substrate, and a support member attached to the package substrate. The support member can be separated from the first semiconductor die, and a second semiconductor die can have one region coupled to the support member and another region coupled to the first semiconductor die.
Abstract:
Memory devices with controllers under stacks of memory packages and associated systems and methods are disclosed herein. In one embodiment, a memory device is configured to couple to a host and can include a substrate, a stack of memory packages, and a controller positioned between the stack and the substrate. The controller can manage data stored by the memory packages based on commands from the host.
Abstract:
Stacked semiconductor die assemblies with support members and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a package substrate, a first semiconductor die attached to the package substrate, and a plurality of support members also attached to the package substrate. The plurality of support members can include a first support member and a second support member disposed at opposite sides of the first semiconductor die, and a second semiconductor die can be coupled to the support members such that at least a portion of the second semiconductor die is over the first semiconductor die.
Abstract:
Stacked semiconductor die assemblies with die support members and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a package substrate, a first semiconductor die attached to the package substrate, and a support member attached to the package substrate. The support member can be separated from the first semiconductor die, and a second semiconductor die can have one region coupled to the support member and another region coupled to the first semiconductor die.
Abstract:
Memory devices with controllers under stacks of memory packages and associated systems and methods are disclosed herein. In one embodiment, a memory device is configured to couple to a host and can include a substrate, a stack of memory packages, and a controller positioned between the stack and the substrate. The controller can manage data stored by the memory packages based on commands from the host.