Wide bandgap semiconductor structure, semiconductor device including the structure, and methods of forming the structure and device
    12.
    发明申请
    Wide bandgap semiconductor structure, semiconductor device including the structure, and methods of forming the structure and device 审中-公开
    宽带隙半导体结构,包括结构的半导体器件,以及形成结构和器件的方法

    公开(公告)号:US20020163010A1

    公开(公告)日:2002-11-07

    申请号:US09849172

    申请日:2001-05-04

    Applicant: Motorola, Inc.

    Abstract: High quality epitaxial layers (26) of wide bandgap materials can be grown overlying monocrystalline substrates (22) such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (24) on a silicon wafer (22). The accommodating buffer layer (24) is a layer of monocrystalline oxide or nitride spaced apart from the silicon wafer (22) by an amorphous interface layer of silicon oxide (28). The layer of wide bandgap material (26) can be used to form electronic devices such as high frequency devices or light emitting devices such as lasers and light emitting diodes.

    Abstract translation: 通过形成用于生长单晶层的柔性衬底,可以生长宽带隙材料的高质量外延层(26),覆盖单晶衬底(22),例如大硅晶片。 实现顺应性衬底的形成的一种方法包括首先在硅晶片(22)上生长容纳缓冲层(24)。 容纳缓冲层(24)是通过氧化硅(28)的非晶界面层与硅晶片(22)间隔开的单晶氧化物或氮化物层。 宽带隙材料层(26)可用于形成诸如高频器件的电子器件或诸如激光器和发光二极管的发光器件。

    Structure and method for fabricating semiconductor structures and devices utilizing perovskite stacks
    13.
    发明申请
    Structure and method for fabricating semiconductor structures and devices utilizing perovskite stacks 审中-公开
    用于制造半导体结构和利用钙钛矿堆的器件的结构和方法

    公开(公告)号:US20020153524A1

    公开(公告)日:2002-10-24

    申请号:US09838273

    申请日:2001-04-19

    Applicant: Motorola Inc.

    Abstract: A high quality semiconductor structure includes a monocrystalline substrate and a perovskite stack overlying the substrate. The perovskite stack may be formed of a first accommodating layer formed of a first perovskite oxide material having a first lattice constant. A second accommodating layer is formed on the first accommodating layer. The second accommodating layer is formed of a second perovskite oxide material having a second lattice constant which is different from the first lattice constant of the first accommodating layer. A monocrystalline material layer is formed overlying the second accommodating layer. A strain is effected at the interface between the perovskite stack and the substrate, at the interface between the perovskite stack and the monocrystalline material layer and/or at the interface between the first accommodating layer and the second accommodating layer. The strain reduces defects in the monocrystalline material layer and results in reduced Schottky leakage current.

    Abstract translation: 高质量的半导体结构包括单晶衬底和覆盖衬底的钙钛矿堆叠。 钙钛矿堆叠可以由具有第一晶格常数的第一钙钛矿氧化物材料形成的第一容纳层形成。 在第一容纳层上形成第二容纳层。 第二容纳层由具有与第一容纳层的第一晶格常数不同的第二晶格常数的第二钙钛矿氧化物材料形成。 在第二容纳层上形成单晶材料层。 在钙钛矿堆和衬底之间的界面处,在钙钛矿堆和单晶材料层之间的界面处和/或在第一容纳层和第二容纳层之间的界面处进行应变。 该应变降低了单晶材料层的缺陷,并导致肖特基漏电流减小。

    Semiconductor structure suitable for forming a solar cell, device including the structure, and methods of forming the device and structure
    14.
    发明申请
    Semiconductor structure suitable for forming a solar cell, device including the structure, and methods of forming the device and structure 审中-公开
    适用于形成太阳能电池的半导体结构,包括该结构的器件,以及形成器件和结构的方法

    公开(公告)号:US20020144725A1

    公开(公告)日:2002-10-10

    申请号:US09832354

    申请日:2001-04-10

    Applicant: Motorola, Inc.

    Abstract: Solar cell structures (100) including high quality epitaxial layers of monocrystalline semiconductor materials that are grown overlying monocrystalline substrates (102) such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers are disclosed. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (104) on a silicon wafer. The accommodating buffer (104) layer is a layer of monocrystalline material spaced apart from the silicon wafer by an amorphous interface layer (112) of silicon oxide. The amorphous interface layer (112) dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The solar cell structures also include a dye (110) to increase an efficiency of the solar cell.

    Abstract translation: 公开了包括通过形成用于生长单晶层的柔性衬底生长在单晶衬底(102)如大硅晶片上的高质量外延层的单晶半导体材料的太阳能电池结构(100)。 实现顺应性衬底的形成的一种方法包括首先在硅晶片上生长容纳缓冲层(104)。 容纳缓冲器(104)层是通过氧化硅的非晶界面层(112)与硅晶片间隔开的单晶材料层。 非晶界面层(112)耗散应变并允许高质量单晶氧化物容纳缓冲层的生长。 太阳能电池结构还包括用于提高太阳能电池效率的染料(110)。

    Structure including a monocrystalline perovskite oxide layer and method of forming the same
    20.
    发明申请
    Structure including a monocrystalline perovskite oxide layer and method of forming the same 审中-公开
    包括单晶钙钛矿氧化物层的结构及其形成方法

    公开(公告)号:US20030022431A1

    公开(公告)日:2003-01-30

    申请号:US09911473

    申请日:2001-07-25

    Applicant: MOTOROLA, INC.

    Abstract: High quality epitaxial layers of monocrystalline oxide materials (24) are grown overlying monocrystalline substrates such as large silicon wafers (22) using RHEED information to control the stoichiometry of the growing film. The monocrystalline oxide layer (24) may be used to form a compliant substrate for monocrystalline growth of additional layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (24) on a silicon wafer (22) spaced apart from the silicon wafer (22) by an amorphous interface layer of silicon oxide (28). The amorphous interface layer (28) dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer (24).

    Abstract translation: 使用RHEED信息生长单晶氧化物材料(24)的高质量外延层覆盖在单晶衬底例如大硅晶片(22)上以控制生长膜的化学计量。 单晶氧化物层(24)可以用于形成用于附加层的单晶生长的柔顺衬底。 实现顺应性衬底的形成的一种方法包括首先通过氧化硅(28)的非晶界面层在与硅晶片(22)间隔开的硅晶片(22)上生长容纳缓冲层(24)。 非晶界面层(28)耗散应变并允许高质量单晶氧化物容纳缓冲层(24)的生长。

Patent Agency Ranking