Abstract:
Provided is an erase method for a multi-tier three-dimension (3D) memory including a plurality of tiers and a plurality of blocks, each of the tiers including a plurality of word lines. The erase method includes: in erasing a selected block among the plurality of blocks, in a current iteration, selecting at least one tier among the plurality of tiers to be erased by a first erase voltage; determining whether the at least one tier passes erase verification; and if the at least one tier passes erase verification, in a next iteration, inhibiting the at least tier which already passes erase verification from erase.
Abstract:
Provided are improved semiconductor memory devices and methods for manufacturing such semiconductor memory devices. A method may incorporate the formation of a p-n junction in a conductive layer. The method may allow for the production of semiconductor memory devices of reduced size.
Abstract:
Methods and apparatuses are contemplated herein for enhancing the program performance of nonvolatile memory devices. In an example embodiment, a nonvolatile memory device comprises a 3D array of nonvolatile memory cells including a plurality of layers, each layer comprising NAND strings of nonvolatile memory cells, the NAND strings coupled to a bit line, and a plurality SSLs and word lines, the SSLs and the word lines arranged orthogonally to the NAND strings, the word lines establishing the nonvolatile memory cells at cross-points between surfaces of the plurality of NAND strings and the word lines, each of the NAND strings further comprising a plurality of SSL transistors coupling the SSLs to the NAND strings, wherein at least a first SSL being configured to receive a first voltage and a second SSL configured to receive at second voltage, and wherein the second SSL being nearer to the word lines.
Abstract:
The present invention provides a manufacturing method of a non-volatile memory including forming a gate dielectric layer on a substrate; forming a floating gate on the gate dielectric layer; forming a first charge blocking layer on the floating gate; forming a nitride layer on the first charge blocking layer; forming a second charge blocking layer on the nitride layer; forming a control gate on the second charge blocking layer; and performing a treatment to the nitride layer to get a higher dielectric constant.
Abstract:
Provided are a memory device and an operation method thereof. The memory device includes a plurality of word lines. The operation method comprising: performing a pre-fill operation on the word lines, in a first loop, applying a selected word line voltage on a first selected word line group and applying an unselected word line voltage on a first unselected word line group, and in a second loop, applying the selected word line voltage on a second selected word line group and applying the unselected word line voltage on a second unselected word line group, the first selected word line group being different from the second selected word line group, and the first unselected word line group being different from the second unselected word line group; performing an erase operation on the word lines; and performing a programming operation on the word lines.
Abstract:
A memory device includes: a first bit line located on a dielectric layer and a second bit line located over the dielectric layer; a first word line and a second word line located between the first bit line and the second bit line; a source line located between the first word line and the second word line; a channel pillar penetrating through the first word line and the source line and the second word line, and being connected to the first bit line, the source line and the second bit line; and a charge storage structure including an upper portion surrounding an upper sidewall of the channel pillar and located between the second word line and the channel pillar; and a lower portion surrounding a lower sidewall of the channel pillar and located between the first word line and the channel pillar.
Abstract:
A method for determining quick-pass-write (QPW) operation in increment-step-program-pulse (ISPP) operation is provided. The QPW operation is simultaneously applying a bit line voltage during the ISPP operation. The method includes, according to bit line voltages varying in a first range and voltage difference values varying in a second range with respect to a verified voltage, estimating a shrinkage quantity of threshold voltage distribution width at each bit line voltage and each voltage difference value, so as to obtain a shrinkage-quantity topographic contour. According to the bit line voltages and the voltage difference values, a program shot number as needed to achieve the verified voltage is estimated, so as to obtain a program-shot-number topographic contour. The shrinkage-quantity topographic contour and the program-shot-number topographic contour are overlapped to determine an operation region formed from an application range of the bit line voltage and an application range of the voltage difference value.
Abstract:
A method for programming a non-volatile memory and a memory system are provided. Each of multiple cells of the non-volatile memory stores data having at least 2 bits. The method includes the following steps. At least one programming pulse is provided for programming a target cell of the cells. At least one program-verify pulse is provided for verifying whether the target cell is successfully programmed. It is determined that whether a threshold voltage of the target cell is greater than or equal to a program-verify voltage. When the threshold voltage is greater than or equal to the program-verify voltage, the target cell is set as successfully programmed. Next, a post-verifying operation is performed to the successfully programmed cell. The post-verifying operation includes determining whether the threshold voltage of the target cell is greater than or equal to a post-verifying voltage.
Abstract:
Methods and apparatuses are contemplated herein for enhancing the program performance of nonvolatile memory devices. In an example embodiment, a nonvolatile memory device comprises a 3D array of nonvolatile memory cells including a plurality of layers, each layer comprising NAND strings of nonvolatile memory cells, the NAND strings coupled to a bit line, and a plurality SSLs and word lines, the SSLs and the word lines arranged orthogonally to the NAND strings, the word lines establishing the nonvolatile memory cells at cross-points between surfaces of the plurality of NAND strings and the word lines, each of the NAND strings further comprising a plurality of SSL transistors coupling the SSLs to the NAND strings, wherein at least a first SSL being configured to receive a first voltage and a second SSL configured to receive at second voltage, and wherein the second SSL being nearer to the word lines.
Abstract:
Embodiments of the present invention provide improved three-dimensional memory cells, arrays, devices, and/or the like and associated methods. In one embodiment, a three-dimensional memory cell is provided. The three-dimensional memory cell comprises a first conductive layer; a third conductive layer spaced apart from the first conductive layer; a channel conductive layer connecting the first conductive layer and the third conductive layer to form an opening having internal surfaces; a dielectric layer disposed along the internal surfaces of the opening surrounded by the first conductive layer, the channel conductive layer and the third conductive layer; and a second conductive layer interposed and substantially filling a remaining open portion formed by the dielectric layer. The first conductive layer, the dielectric layer, and the second conductive layer are configured to form a staircase structure.