摘要:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an IID disposed on a top surface of a metal gate disposed on the substrate.
摘要:
Methods and associated structures of forming a microelectronic device are described. Those structures may comprise a transistor comprising a metal gate disposed on a gate dielectric that is disposed on a substrate, and a source/drain region disposed adjacent a channel region of the transistor. The source/drain region comprises a source/drain extension comprising a vertex point, wherein a top surface of the channel region is substantially planar with the vertex point.
摘要:
A multi-component low-k isolation spacer for a conductive region in a semiconductor structure is described. In one embodiment, a replacement isolation spacer process is utilized to enable the formation of a two-component low-k isolation spacer adjacent to a sidewall of a gate electrode in a MOS-FET device.
摘要:
A method of forming a transistor with self-aligned source and drain extensions in close proximity to a gate dielectric layer of the transistor comprises forming a gate stack on a substrate, implanting a dopant into regions of the substrate adjacent to the gate stack, wherein the dopant increases the etch rate of the substrate and defines the location of the source and drain extensions, forming a pair of spacers on laterally opposite sides of the gate stack that are disposed atop the doped regions of the substrate, etching the doped regions of the substrate and portions of the substrate subjacent to the doped regions, wherein an etch rate of the doped regions is higher than an etch rate of the portions of the substrate subjacent to the doped regions, and depositing a silicon-based material in the etched portions of the substrate.
摘要:
A method and apparatus to improve the contact formation of salicide and reduce the external resistance of a transistor is disclosed. A gate electrode is formed on a surface of a substrate. A source region and a drain region are isotropically etched in the substrate. A Silicon Germanium alloy is doped in situ with Boron in the source region and in the drain region. Silicon is deposited on the Silicon Germanium alloy. Nickel is deposited on the Silicon. A Nickel Silicon Germanium silicide layer is formed on the Silicon Germanium alloy. A Nickel Silicon silicide layer is formed on the Nickel Silicon Germanium silicide layer.
摘要:
The invention relates to a method for production of a metallic or metal-containing layer (5) by using a pre-cursor on a silicon- or germanium-containing layer, of, in particular, an electronic component, whereby an intermediate layer is applied to the silicon- or germanium-containing layer before the use of the pre-cursor. Said intermediate layer forms a diffusion barrier for at least those elements or the pre-cursor which would etch the silicon- or germanium-containing layer and is itself resistant to etching by the pre-cursor.
摘要:
Semiconductor devices having necked semiconductor bodies and methods of forming semiconductor bodies of varying width are described. For example, a semiconductor device includes a semiconductor body disposed above a substrate. A gate electrode stack is disposed over a portion of the semiconductor body to define a channel region in the semiconductor body under the gate electrode stack. Source and drain regions are defined in the semiconductor body on either side of the gate electrode stack. Sidewall spacers are disposed adjacent to the gate electrode stack and over only a portion of the source and drain regions. The portion of the source and drain regions under the sidewall spacers has a height and a width greater than a height and a width of the channel region of the semiconductor body.
摘要:
A multi-component strain-inducing semiconductor region is described. In an embodiment, formation of such a strain-inducing semiconductor region laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate, providing a strained crystalline substrate. In one embodiment, the multi-component strain-inducing material region comprises a first portion and a second portion which are separated by an interface. In a specific embodiment, the concentration of charge-carrier dopant impurity atoms of the two portions are different from one another at the interface.
摘要:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an IID disposed on a top surface of a metal gate disposed on the substrate.
摘要:
A CMOS device includes NMOS (110) and PMOS (130) transistors, each of which include a gate electrode (111, 131) and a gate insulator (112, 132) that defines a gate insulator plane (150, 170). The transistors each further include source/drain regions (113/114, 133/134) having a first portion (115, 135) below the gate insulator plane and a second portion (116, 136) above the gate insulator plane, and an electrically insulating material (117). The NMOS transistor further includes a blocking layer (121) having a portion (122) between the gate electrode and a source contact (118) and a portion (123) between the gate electrode and a drain contact (119). The PMOS transistor further includes a blocking layer (141) having a portion (142) between the source region and the insulating material and a portion (143) between the drain region and the insulating material.