Abstract:
Techniques pertaining to low-power enhanced multi-link single radio (EMLSR) listen in wireless communications are described. A first multi-link device (MLD) reduces power consumption while supporting a latency-sensitive application by performing certain operations. The first MLD first listens at a lower power in a narrower bandwidth to receive an initial physical-layer protocol data unit (PPDU) from a second MLD as part of a frame exchange. In response to receiving the initial PPDU, the first MLD switches from the narrower bandwidth to a wider bandwidth to complete the frame exchange with the second MLD in the wider bandwidth. In reducing the power consumption, the first MLD reduces its power consumption to the lower power when operating in the narrower bandwidth compared to a higher power used by the first MLD when operating in the wider bandwidth.
Abstract:
A semiconductor package structure is provided. The semiconductor package structure includes a first semiconductor package that includes a first semiconductor die having a first surface and a second surface opposite thereto. A first package substrate is disposed on the first surface of the first semiconductor die. A first molding compound surrounds the first semiconductor die and the first package substrate. A first redistribution layer (RDL) structure is disposed on the first molding compound, in which the first package substrate is interposed and electrically coupled between the first semiconductor die and the first RDL structure.
Abstract:
A semiconductor package structure including a first semiconductor package is provided. The first semiconductor package includes a first semiconductor package including a first redistribution layer (RDL) structure having a first surface and a second surface opposite thereto. A first semiconductor die and a first molding compound that surrounds the first semiconductor die are disposed on the first surface of the first RDL structure. An IMD structure having a conductive layer with an antenna pattern or a conductive shielding layer is disposed on the first molding compound and the first semiconductor die.
Abstract:
A semiconductor package structure has a first electronic component on an insulating layer, a dielectric layer on the insulating layer and surrounding the first electronic component, a second electronic component stacked on the first electronic component, wherein an active surface of the first electronic component faces an active surface of the second electronic component, a molding compound on the first electronic component and surrounding the second electronic component, a third electronic component stacked on the second electronic component and the molding compound.
Abstract:
A semiconductor chip package assembly includes a package substrate having a chip mounting surface; a plurality of solder pads disposed on the chip mounting surface; a first dummy pad and a second dummy pad spaced apart from the first dummy pad disposed on the chip mounting surface; a solder mask on the chip mounting surface and partially covering the solder pads, the first dummy pad, and the second dummy pad; a chip package mounted on the chip mounting surface and electrically connected to the package substrate through a plurality of solder balls on respective said solder pads; a discrete device having a first terminal and a second terminal disposed between the chip package and the package substrate; a first solder connecting the first terminal with the first dummy pad and the chip package; and a second solder connecting the second terminal with the second dummy pad and the chip package.
Abstract:
In one implementation, a semiconductor package assembly includes a semiconductor die, a first molding compound covering a back surface of the semiconductor die, a redistribution layer (RDL) structure disposed on a front surface of the semiconductor die, wherein the semiconductor die is coupled to the RDL structure, and a passive device, embedded in the redistribution layer (RDL) structure and coupled to the semiconductor die.
Abstract:
A semiconductor package structure is provided. The semiconductor package structure includes a first electronic component on a substrate. The semiconductor package structure also includes a second electronic component stacked on the first electronic component. The active surface of the first electronic component faces the active surface of the second electronic component. The semiconductor package structure further includes a molding compound on the first electronic component and surrounding the second electronic component. In addition, the semiconductor package structure includes a third electronic component stacked on the second electronic component and the molding compound.
Abstract:
A semiconductor chip package assembly includes a package substrate having a chip mounting surface; a plurality of solder pads disposed on the chip mounting surface; a first dummy pad and a second dummy pad spaced apart from the first dummy pad disposed on the chip mounting surface; a solder mask on the chip mounting surface and partially covering the solder pads, the first dummy pad, and the second dummy pad; a chip package mounted on the chip mounting surface and electrically connected to the package substrate through a plurality of solder balls on respective said solder pads; a discrete device having a first terminal and a second terminal disposed between the chip package and the package substrate; a first solder connecting the first terminal with the first dummy pad and the chip package; and a second solder connecting the second terminal with the second dummy pad and the chip package.
Abstract:
A semiconductor package assembly is provided. The semiconductor package assembly includes a semiconductor package. The semiconductor package includes a semiconductor die. A redistribution layer (RDL) structure is disposed on the semiconductor die and is electrically connected to the semiconductor die. An active or passive element is disposed between the semiconductor die and the RDL structure. A molding compound surrounds the semiconductor die and the active or passive element.
Abstract:
A semiconductor package assembly is provided. The semiconductor package assembly includes a first semiconductor package. The first semiconductor package includes a first semiconductor die. A first redistribution layer (RDL) structure is coupled to the first semiconductor die and includes a first conductive trace. The semiconductor package assembly also includes a second semiconductor package bonded to the first semiconductor package. The second semiconductor package includes a second semiconductor die. An active surface of the second semiconductor die faces an active surface of the first semiconductor die. A second RDL structure is coupled to the second semiconductor die and includes a second conductive trace. The first conductive trace is in direct contact with the second conductive trace.