Abstract:
Each of a plurality of light emitting elements has a polygonal shape with five or more corners. An interior angle at each of the corners is less than 180°. The plurality of light emitting elements include a first light emitting element having a first bottom surface, a first top surface opposite to the first bottom surface, and a first lateral side surface between the first bottom surface and the first top surface. The second light emitting element has a second bottom surface, a second top surface opposite to the second bottom surface, and a second lateral side surface between the second bottom surface and the second top surface. The second lateral side surface is provided not to oppose to the first lateral side surface in substantially parallel.
Abstract:
The sapphire substrate has a principal surface for growing a nitride semiconductor to form a nitride semiconductor light emitting device and comprising a plurality of projections of the principal surface, wherein an outer periphery of a bottom surface of each of the projections has at least one depression. This depression is in the horizontal direction. The plurality of projections are arranged so that a straight line passes through the inside of at least any one of projections when the straight line is drawn at any position in any direction in a plane including the bottom surfaces of the plurality of projections.
Abstract:
A sapphire substrate having a principal surface for growing a nitride semiconductor to form a nitride semiconductor light emitting device comprises a plurality of projections on the principal surface. Each of the projections has a bottom that has a substantially polygonal shape. Each side of the bottom of the projections has a depression in its center. Vertexes of the bottoms of the respective projections extend in a direction that is within a range of ±10 degrees of a direction that is rotated counter-clockwise by 30 degrees from a crystal axis “a” of the sapphire substrate.
Abstract:
A light emitting element includes: a semiconductor structure including: a substrate, an n-side nitride semiconductor layer located on the substrate, and a p-side nitride semiconductor layer located on the n-side nitride semiconductor layer, wherein a p-side nitride semiconductor side of the semiconductor structure is a light extraction face side, and an n-side nitride semiconductor side of the semiconductor structure is a mounting face side; a first protective layer located on and in direct contact with an upper face of the p-side nitride semiconductor layer in a region corresponding to the peripheral portion of the p-side nitride semiconductor layer; and a current diffusion layer located on and in direct contact with an upper face of the p-side nitride semiconductor layer in a region corresponding to the area inside of the peripheral portion. The current diffusion layer does not overlap the first protective layer in a top view.
Abstract:
Each of a plurality of light emitting elements has a hexagonal shape with a center. An interior angle at each of corners is less than 180°. The plurality of light emitting elements include a first light emitting element having a first lateral side surface and a second light emitting element having a second lateral side surface. An orientation of the hexagonal shape of the second light emitting element is rotated by 30 degrees plus 30°+60°×N (N is an integer) with respect to the center of the second light emitting element relative to an orientation of the hexagonal shape of the first light emitting element such that the second lateral side surface is not parallel to the first lateral side surface.
Abstract:
A method of manufacturing a plurality of light emitting elements, the method includes: providing a semiconductor wafer; dividing the p-side nitride semiconductor layer into a plurality of demarcated element regions; forming a protective layer on regions including an outer periphery of an upper surface of the p-side nitride semiconductor layer of each of the plurality of demarcated element regions and exposed side surfaces in the semiconductor structure that are formed by the selectively removing the portion of the p-side nitride semiconductor layer; reducing a resistance of regions of the p-side nitride semiconductor layer; and dividing the semiconductor wafer into a plurality of light emitting elements.
Abstract:
A method for manufacturing a plurality of light emitting elements includes: providing a semiconductor wafer comprising: a substrate, an n-side nitride semiconductor layer containing an n-type impurity and located on the substrate, and a p-side nitride semiconductor layer containing a p-type impurity and located on the n-side nitride semiconductor layer; forming a protective layer on an upper face of the p-side nitride semiconductor layer in regions that include borders of areas to become the plurality of light emitting elements; reducing a resistance of the p-side nitride semiconductor in areas where no protective layer has been formed by annealing the semiconductor wafer; irradiating a laser beam on the substrate so as to form modified regions in the substrate; and obtaining a plurality of light emitting elements by dividing the semiconductor wafer in which the modified regions have been formed in the substrate.
Abstract:
A light emitting element having a recess-protrusion structure on a substrate is provided. A semiconductor light emitting element 100 has a light emitting structure of a semiconductor 20 on a first main surface of a substrate 10. The first main surface of the substrate 10 has substrate protrusion portion 11, the bottom surface 14 of each protrusion is wider than the top surface 13 thereof in a cross-section, or the top surface 13 is included in the bottom surface 14 in a top view of the substrate. The bottom surface 14 has an approximately polygonal shape, and the top surface 13 has an approximately circular or polygonal shape with more sides than that of the bottom surface 14.