Abstract:
A method for manufacturing a light emitting device includes the steps of: disposing a light emitting element on a base; disposing a single or plurality of light-transmissive members on the base so that the light emitting element is interposed between and spaced apart from at least one pair of opposing portions of the single or plurality of light-transmissive members; covering the base, the at least one pair of opposing portions of the single or plurality of light-transmissive members, and the light emitting element with a sealing member containing a phosphor; and cutting the base, the at least one pair of opposing portions of the single or plurality of light-transmissive members, and the sealing member, along paths on which the at least one pair of opposing portions are disposed.
Abstract:
A package for mounting a light emitting element includes a recess; a pair of lead electrodes exposed at a bottom surface of the recess; a plating layer covering a surface of each of the pair of lead electrodes; and a resin molded body retaining the pair of lead electrodes, and forming an area between the pair of lead electrodes at the bottom surface of the recess and a lateral surface of the recess. At least one of the lead electrodes has a front surface protrusion that is linearly formed along the resin molded body at the bottom surface of the recess and along a periphery of the bottom surface of the recess, and a back surface protrusion that is formed at a position at a back surface opposite to a position of the front surface protrusion, and at least a tip of each of the front surface protrusion and the back surface protrusion is exposed outside the plating layer.
Abstract:
A light emitting device includes: a package including a first lead, a second lead, and a molded body; and a light emitting element provided on the second lead. The first lead includes a first electrode terminal having a first thickness in a thickness direction, and a first holding portion connected to the first electrode terminal and having a thickness smaller than the first thickness in the thickness direction, the first holding portion having a front surface and a rear surface opposite to the front surface in the thickness direction. The second lead includes a second electrode terminal facing the first electrode terminal in the thickness direction, and a connection electrically connected to the first lead. The molded body holds the first lead and the second lead and covers the front surface and the rear surface of the first holding portion.
Abstract:
A fluoride phosphor, comprising fluoride particles having an average particle size of 0.1 μm to 7 μm and a maximum particle size of 1 μm to 18 μm, wherein a ratio of the maximum particle size with respect to the average particle size is higher than 1. The fluoride particles have a composition containing an element M containing at least one selected from the group consisting of Group 4 elements, Group 13 elements, and Group 14 elements; an alkali metal; Mn; and F. In the composition, when the number of moles of the alkali metal is 2, the number of moles of Mn is more than 0 but less than 0.2, the number of moles of the element M is more than 0.8 but less than 1, and the number of moles of F is more than 5 but less than 7.
Abstract:
A package includes a first lead and a second lead. The first lead includes a first part and a second part connected to the first part. The second lead includes a third part and a fourth part connected to the third part. A molded body having a front surface and rear surface opposite to the front surface. The first part has a first terminal exposed from the rear surface. The first terminal is provided within an outer peripheral edge of the rear surface. The third part has a second terminal exposed from the rear surface. The second terminal is provided within the outer peripheral edge. The first lead or the second lead has a heat releasing terminal exposed from the rear surface. The heat releasing terminal is disposed between the first terminal and the second terminal to be spaced apart from the first terminal and the second terminal.
Abstract:
A package for mounting a light emitting element includes: a first lead electrode having, in a plan view, a first region, a second region surrounding a periphery of the first region having a width of 110 μm or more and a thickness greater than that of the first region, and a third region partially surrounding a periphery of the second region and having a thickness smaller than that of the second region; a second lead electrode spaced apart from the first lead electrode; and a resin molded body fixing a portion of each of the first and second lead electrodes. A portion of each of the first and second lead electrodes and a portion of the resin molded body exposed therebetween form a bottom surface of a recess.
Abstract:
Each of a plurality of light emitting elements has a polygonal shape with five or more corners. An interior angle at each of the corners is less than 180°. The plurality of light emitting elements include a first light emitting element having a first bottom surface, a first top surface opposite to the first bottom surface, and a first lateral side surface between the first bottom surface and the first top surface. The second light emitting element has a second bottom surface, a second top surface opposite to the second bottom surface, and a second lateral side surface between the second bottom surface and the second top surface. The second lateral side surface is provided not to oppose to the first lateral side surface in substantially parallel.
Abstract:
A light emitting device has: a first lead which is mounted a light emitting element, a second lead separated by an interval from the first lead, an insulating member configured to fix the first lead and the second lead, a wavelength conversion portion configured to cover the light emitting element, and a lens portion configured to cover the wavelength conversion portion, a thickness of the insulating member is equal to the thickness of the first lead and the second lead, a groove or a recessed portion is provided to retain the wavelength conversion portion in a specific region is formed in the first lead, and a lower surface of the first lead that forms an opposite side of a region formed on the wavelength conversion portion is not covered by the insulating member and is exposed to the outside.