Abstract:
A light-emitting component includes a light-emitting chip and a housing including a plastic body and a reflector, the reflector includes an electrically conductive layer, the light-emitting chip includes a top side and an underside, the underside of the light-emitting chip is arranged on the plastic body, an electrical terminal on the top side of the light-emitting chip electrically conductively connects to the reflector by a bond wire, the underside of the light-emitting chip and the reflector are electrically insulated from one another, a conduction region is provided within the plastic body, thermal conductivity of the conduction region is greater than thermal conductivity of the plastic body, the conduction region adjoins the underside of the light-emitting chip, and the conduction region extends from the side of the plastic body facing the light-emitting chip as far as the side of the plastic body facing away from the light-emitting chip.
Abstract:
A method for producing singulated semiconductor components includes providing a starting substrate. An etching process is carried out to form depressions at a side of the starting substrate. The depressions are arranged in the region of the semiconductor components to be produced. Walls present between the depressions are arranged in the region of separating regions provided for severing the starting substrate. The method furthermore comprises forming a metallic layer on the side of the starting substrate with the depressions and walls and carrying out a further etching process for severing the starting substrate in the separating regions and forming the singulated semiconductor components.
Abstract:
A method relates to separating a component composite into a plurality of component regions, wherein the component composite is provided having a semiconductor layer sequence comprising a region for generating or for receiving electromagnetic radiation. The component composite is mounted on a rigid subcarrier. The component composite is separated into the plurality of component regions, wherein one semiconductor body is produced from the semiconductor layer sequence for each component region. The component regions are removed from the subcarrier.
Abstract:
An electronic device and a method for producing an electronic device are disclosed. In an embodiment the electronic device includes a first component and a second component and a sinter layer connecting the first component to the second component, the sinter layer comprising a first metal, wherein at least one of the components comprises at least one contact layer which is arranged in direct contact with the sinter layer, which comprises a second metal different from the first metal and which is free of gold.
Abstract:
A method is specified for producing a light-emitting semiconductor component, in which method a light-emitting semiconductor layer sequence (2) with an active layer (3) that is designed to emit light during operation of the semiconductor component is provided, a wavelength conversion layer (4) containing at least one wavelength conversion material is applied on the semiconductor layer sequence (2), and a ceramic layer (5) is applied on the wavelength conversion layer (4) by means of an aerosol deposition process. A light-emitting semiconductor component is also specified.
Abstract:
An optoelectronic component, comprising: a structured semiconductor layer, a metallic mirror layer arranged on the semiconductor layer, a diffusion barrier layer arranged on the metallic mirror layer, a passivation layer arranged on the diffusion barrier layer, wherein the semiconductor layer comprises a mesa structure with mesa trenches. The mesa trenches taper from the surface of the semiconductor layer towards the mirror layer.
Abstract:
An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment the component includes a semiconductor chip, a molded body and an electrical through-contact constituting an electrically conductive connection through the molded body. The through-contact and the semiconductor chip are embedded alongside one another and are spaced apart in the molded body. A first contact pad of the through-contact is arranged at an underside of the molded body. A second contact pad of the through-contact is arranged at a top side of the molded body. The second contact pad is electrically conductively connected to the electrical contact of the semiconductor chip. The through-contact is arranged such that a molded body is arranged at least in a section between the first and second contact pads on a straight line between the first and second contact pads.
Abstract:
A method for producing a plurality of optoelectronic semiconductor components (100) is provided, comprising the following steps: a) providing an auxiliary carrier (2); b) providing a plurality of semiconductor chips (10), wherein each of the semiconductor chips has a carrier body (12) and a semiconductor body (4) arranged on an upper side (22) of the carrier body; c) attaching the plurality of semiconductor chips on the auxiliary carrier, wherein the semiconductor chips are spaced apart from one another in a lateral direction (L) and wherein the semiconductor bodies are facing the auxiliary carrier, as seen from the carrier body; d) forming a scattering layer (18), at least in regions between the semiconductor bodies of adjacent semiconductor chips; e) forming a composite package (20); f) removing the auxiliary carrier (2); and g) individually separating the composite package into a plurality of optoelectronic semiconductor components (100).
Abstract:
An optoelectronic component, comprising: a structured semiconductor layer, a metallic mirror layer arranged on the semiconductor layer, a diffusion barrier layer arranged on the metallic mirror layer, a passivation layer arranged on the diffusion barrier layer, wherein the semiconductor layer comprises a mesa structure with mesa trenches. The mesa trenches taper from the surface of the semiconductor layer towards the mirror layer