Abstract:
In an embodiment a component includes a semiconductor chip, a converter layer and a grid structure, wherein the semiconductor chip is configured to generate electromagnetic radiation, wherein the converter layer is configured to convert at least one portion of the electromagnetic radiation, wherein the grid structure is configured to suppress lateral optical crosstalk, the grid structure having a grid frame and openings enclosed by the grid frame, wherein the grid structure only adjoins the converter layer, wherein the openings of the grid structure are free of a material of the converter layer, and wherein optical elements are arranged in the openings.
Abstract:
A method for producing at least one optoelectronic semiconductor component and an optoelectronic semiconductor component are disclosed. In an embodiment, the method includes providing a semiconductor layer sequence comprising a first semiconductor material configured to emit a first radiation and applying a conversion element at least partially on the semiconductor layer sequence via a cold method, wherein the conversion element comprises a second semiconductor material, and wherein the second semiconductor material is configured to convert the first radiation into a second radiation.
Abstract:
A method for producing optoelectronic semiconductor devices and an optoelectronic semiconductor device are disclosed. In an embodiment, the method includes providing a plurality of semiconductor chips for producing electromagnetic radiation, arranging the plurality of semiconductor chips in a plane, forming a housing body composite, at least some regions of which are arranged between the semiconductor chips, forming a plurality of conversion elements, wherein each conversion element comprises a wavelength-converting conversion material and is arranged on one of the semiconductor chips, encapsulating the plurality of conversion elements at least on their lateral edges by an encapsulation material, and separating the housing body composite into a plurality of optoelectronic semiconductor components.
Abstract:
An optoelectronic semiconductor component includes one or more light-emitting diode chips. The light-emitting diode chip has a main radiation side. A diaphragm is arranged downstream of the main radiation side along a main radiation direction of the light-emitting diode chip. The diaphragm is mounted on or in a component housing. The main radiation side has a mean edge length of at least 50 μm. The diaphragm can be switched from light-impervious to light-pervious. The diaphragm comprises precisely one opening region for radiation transmission. The semiconductor component can be used as a flashlight for a mobile image recording device.
Abstract:
A method for producing a plurality of conversion elements (10) is specified, comprising providing a carrier substrate (1), introducing a converter material (3) into a matrix material (2), applying the matrix material (2) with the converter material (3) to individual regions (8) of the carrier substrate (1) in a non-continuous pattern, applying a barrier substrate (5) to the matrix material (2) and to the carrier substrate (1), and singulating the carrier substrate (1) with the matrix material (2) and the barrier substrate (5) into a plurality of conversion elements (10) along singulation lines (V), wherein the conversion elements (10) in each case comprise at least one of the regions (8) of the matrix material (2).
Abstract:
A method for producing optoelectronic semiconductor devices and an optoelectronic semiconductor device are disclosed. In an embodiment, the method includes providing a plurality of semiconductor chips for producing electromagnetic radiation, arranging the plurality of semiconductor chips in a plane, forming a housing body composite, at least some regions of which are arranged between the semiconductor chips, forming a plurality of conversion elements, wherein each conversion element comprises a wavelength-converting conversion material and is arranged on one of the semiconductor chips, encapsulating the plurality of conversion elements at least on their lateral edges by an encapsulation material, and separating the housing body composite into a plurality of optoelectronic semiconductor components.
Abstract:
Various embodiments may relate to a wavelength conversion element including at least one sintered wavelength converting material, wherein a grid is formed by channels within the sintered wavelength converting material, the channels are at least partially surrounded by the sintered wavelength converting material, the channels reach at least partially through the sintered wavelength converting material in a direction perpendicular or oblique to a main extension direction of the wavelength conversion element, and the channels contain a non-converting sintered separator material.
Abstract:
A method is specified for producing a light-emitting semiconductor component, in which method a light-emitting semiconductor layer sequence (2) with an active layer (3) that is designed to emit light during operation of the semiconductor component is provided, a wavelength conversion layer (4) containing at least one wavelength conversion material is applied on the semiconductor layer sequence (2), and a ceramic layer (5) is applied on the wavelength conversion layer (4) by means of an aerosol deposition process. A light-emitting semiconductor component is also specified.
Abstract:
An optelectonic arrangement and a lighting device are disclosed. In an embodiment the arrangement includes a semiconductor chip for generating radiation and a radiation conversion element located downstream of the semiconductor chip with respect to a radiation direction, wherein the radiation conversion element includes a plurality of conversion bodies each with a longitudinal extension axis, and wherein a spatial orientation of the longitudinal extension axes has a preferred direction.
Abstract:
Various embodiments may relate to a wavelength conversion element including at least one sintered wavelength converting material, wherein a grid is formed by channels within the sintered wavelength converting material, the channels are at least partially surrounded by the sintered wavelength converting material, the channels reach at least partially through the sintered wavelength converting material in a direction perpendicular or oblique to a main extension direction of the wavelength conversion element, and the channels contain a non-converting sintered separator material.