Abstract:
A method for producing a thin-film semiconductor body is provided. A growth substrate is provided. A semiconductor layer with funnel-shaped and/or inverted pyramid-shaped recesses is epitaxially grown onto the growth substrate. The recesses are filled with a semiconductor material in such a way that pyramid-shaped outcoupling structures arise. A semiconductor layer sequence with an active layer is applied on the outcoupled structures. The active layer is suitable for generating electromagnetic radiation. A carrier is applied onto the semiconductor layer sequence. At least the semiconductor layer with the funnel-shaped and/or inverted pyramid-shaped recesses is detached, such that the pyramid-shaped outcoupling structures are configured as projections on a radiation exit face of the thin-film semiconductor.
Abstract:
A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
Abstract:
An optoelectronic semiconductor chip is disclosed. In an embodiment the optoelectronic semiconductor chip includes a first semiconductor layer sequence having a plurality of microdiodes, and a second semiconductor layer sequence having an active region. The first semiconductor layer sequence and the second semiconductor layer sequence are based on a nitride compound semiconductor material, the first semiconductor layer sequence is before the first semiconductor layer sequence in the direction of growth, and the microdiodes form an ESD protection for the active region.
Abstract:
A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
Abstract:
A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
Abstract:
An arrangement (1) for generating white light (5), having at least two light-emitting diodes, wherein the first diode (2) is designed to generate blue light, wherein a conversion element (4) is associated with the first diode, wherein the conversion element is designed to convert a part of the blue light from the first diode into green light, and wherein the conversion element is designed to convert a part of the blue light from the first diode into red light, wherein the second diode (3) is provided to emit red light.
Abstract:
A luminescence conversion element for wavelength conversion of primary electromagnetic radiation into secondary electromagnetic radiation includes first luminescent material particles that, when excited by the primary electromagnetic radiation, emit a first electromagnetic radiation, a peak wavelength of which is at least 515 nm to at most 550 nm of a green region of the electromagnetic spectrum; second luminescent material particles that, when excited by the primary electromagnetic radiation, emit a second electromagnetic radiation, a peak wavelength of which is at least 595 nm to at most 612 nm of a yellow-red region of the electromagnetic spectrum; and third luminescent material particles that, when excited by the primary electromagnetic radiation, emit a third electromagnetic radiation, a peak wavelength of which is at least 625 nm to at most 660 nm of a red region of the electromagnetic spectrum.
Abstract:
A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
Abstract:
The invention relates to an An arrangement (1) for generating white light (5), having at least two light-emitting diodes, wherein the first diode (2) is designed to generate blue light, wherein a conversion element (4) is associated with the first diode, wherein the conversion element is designed to convert a part of the blue light from the first diode into green light, and wherein the conversion element is designed to convert a part of the blue light from the first diode into red light, wherein the second diode (3) is provided to emit red light.
Abstract:
A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.