Abstract:
Aspects of the disclosure are directed to reducing clock-ungating induced voltage droop by determining a maximum frequency value associated with an output clock waveform; modulating a clock frequency of the output clock waveform for a first time duration based on a first programmable mask pattern or a first Boolean function; and determining if either the first programmable mask pattern or the first Boolean function should be changed. In accordance with one aspect, a voltage droop mitigation circuit includes a control logic for receiving an input clock waveform and a clock enable signal waveform and for outputting a gated clock enable signal waveform; a latch coupled to the control logic, the latch for holding a state of the gated clock enable signal waveform and a AND gate coupled to the latch, the AND gate for outputting an output clock waveform.
Abstract:
A temperature sensor position offset error correction power implementation include monitors (e.g., digital power monitor/meter) to measure activity on a die, and uses the activity measurements to compute real-time temperature offsets by converting activity to power, which can be used in a simplified compact thermal model. A system on chip including the die receives a temperature measurement of a region of the system on chip from a sensor. Power consumed by the region is estimated based on the measured activity, and temperature measurement of the system on chip is adjusted based on the estimated power.
Abstract:
A device includes a first driver circuit coupled to a first bus line, where the first driver circuit includes a first delay element. The first delay element is configured to receive a first input signal and generate a first output signal. The first output signal transitions logic levels after a first delay period when the first input signal transitions from a logic high level to a logic low level. The first output signal transitions logic levels after a second delay period when the first input signal transitions from the logic low level to the logic high level. The first delay element includes a sense amplifier. The first driver circuit is configured to transmit the first output signal over the first bus line. The device also includes a second driver circuit configured to transmit a second output signal over a second bus line.
Abstract:
A circuit includes a pulsed-latch circuit. The pulsed-latch circuit includes a first plurality of transistors. One or more of the first plurality of transistors is length-of-diffusion (LOD) protected.
Abstract:
A circuit includes a pulsed-latch circuit. The pulsed-latch circuit includes a first plurality of transistors. One or more of the first plurality of transistors is length-of-diffusion (LOD) protected.
Abstract:
A circuit including a logic gate responsive to a clock signal and to a control signal. The circuit also includes a master stage of a flip-flop. The circuit further includes a slave stage of the flip-flop responsive to the master stage. The circuit further includes an inverter responsive to the logic gate and configured to output a delayed version of the clock signal. An output of the logic gate and the delayed version of the clock signal are provided to the master stage and to the slave stage of the flip-flop. The master stage is responsive to the control signal to control the slave stage.
Abstract:
A processor having a multi-Vt critical path is provided that includes both low-Vt devices and high-Vt devices. If the processor is operating in a high performance mode, the multi-Vt critical path is controlled so as to use the low-Vt devices. Conversely, if the processor is operating in a low power mode, the multi-Vt critical path is controlled so as to use the high-Vt devices. In this fashion, the complication of multiple processing cores is avoided in that a single processor core can operate in both the high performance mode and in the low power mode.