Abstract:
According to the present invention, a novel epoxy group-containing copolymer, including a production process thereof, and an epoxy (meth)acrylate copolymer starting from the epoxy group-containing copolymer, including a production process thereof are provided. The epoxy group-containing copolymer of the present invention contains a specific epoxy group-containing repeating unit and an olefin-based repeating unit. A novel epoxy (meth)acrylate copolymer of the present invention is produced by reacting the epoxy group-containing copolymer with (meth)acrylic acid.
Abstract:
A method for producing an oligosilane which includes a reaction step of producing an oligosilane by dehydrogenative coupling of hydrosilane. The reaction step is carried out in the presence of a catalyst containing at least one transition element selected from the group consisting of Periodic Table group 3 transition elements, group 4 transition elements, group 5 transition elements, group 6 transition elements, and group 7 transition elements. Also disclosed is a method for producing a catalyst for dehydrogenative coupling that produces an oligosilane by dehydrogenative coupling of hydrosilane.
Abstract:
A method for producing an oligosilane including a reaction step of introducing a fluid containing a hydrosilane into a continuous reactor provided with a catalyst layer inside to produce an oligosilane from the hydrosilane and discharging a fluid containing the oligosilane from the reactor. The reaction step satisfies all of the following conditions (i) to (iii): (i) a temperature of the hydrosilane-containing fluid at an inlet of the catalyst layer is higher than a temperature of the oligosilane-containing fluid at an outlet of the catalyst layer; (ii) the temperature of the hydrosilane-containing fluid at the inlet of the catalyst layer is from 200 to 400° C.; and (iii) the temperature of the oligosilane-containing fluid at the outlet of the catalyst layer is from 50 to 300° C.
Abstract:
An object of the present invention is to provide an oligosilane production method with which a target oligosilane can be selectively produced. Oligosilanes can be efficiently produced at an improved selectivity for a target oligosilane by using, as a raw material, not only monosilane but also an oligosilane with a smaller number of silicon atoms than the target oligosilane or conversely an oligosilane with a larger number of silicon atoms than the target oligosilane.
Abstract:
Provided are a transparent electrode and a production method thereof, the transparent electrode using metal nanowires and/or metal nanotubes as conductive components, and showing favorable surface flatness, conductivity, and light transmittance. A transparent conductive ink is prepared by dispersing metal nanowires and/or metal nanotubes in a solution formed by dissolving a thermoset or thermoplastic binder resin having no fluidity within the range of 5 to 40° C. to a solvent, the content of the binder resin being 100 to 2500 parts by mass relative to 100 parts by mass of the metal nanowires and/or metal nanotubes. An electrode pattern having a desired shape is printed on a substrate with the transparent conductive ink, and pulsed light is irradiated to the printed electrode pattern, to thereby obtain a transparent electrode having a surface resistance of 0.1 to 500Ω/□ and a surface arithmetic average roughness Ra satisfying Ra≦5 nm.
Abstract:
Provided is a conductive resin composition for microwave heating capable of suppressing the generation of sparks when microwave heating is performed. A conductive resin composition for microwave heating comprising a non-carbonaceous conductive filler, a curable and insulating binder resin, and a carbonaceous material having a higher volume resistivity value than the non-carbonaceous conductive filler, the carbonaceous material having an aspect ratio of 20 or less, and the content of the carbonaceous material being 1 to 20 parts by mass, relative to the total of 100 parts by mass of the non-carbonaceous conductive filler and the curable and insulating binder resin. The carbonaceous material efficiently absorbs the microwave, and thus, when the microwave is irradiated to heat and cure the conductive resin composition, generation of sparks can be suppressed.
Abstract:
Provided are a metal nanowire production method capable of producing long and thin metal nanowires, and metal nanowires produced thereby. A metal nanowire production method comprising, a step for preparing a solution containing a metal salt, a polymer, at least one selected from a group consisting of halides, sulfides, carbonates, and sulfates, and an aliphatic alcohol, and a step for heating and reacting the solution at the temperature of 100° C. to 250° C. for 10 minutes or more while maintaining a practical shear stress applied to the solution at 10 mPa·m or less, wherein, during the heating and reacting step, ultraviolet-visible absorption spectrum change of the solution is measured, and a reaction time is controlled on the basis of the ultraviolet-visible absorption spectrum information.
Abstract:
[Problem] To provide: a conductive adhesive which contains an epoxy (meth)acrylate resin and which can form a bonded zone that is not susceptible to being deteriorated by halogen; an anisotropic conductive film; and electronic devices using both. [Solution] A conductive adhesive and an anisotropic conductive film which each contain a conductive filler and a binder resin, wherein: the binder resin comprises an epoxy (meth)acrylate resin that is a product of addition reaction of (meth)acrylic acid and an epoxy compound having a sum of total chlorine atom concentration and total bromine atom concentration of 300 massppm or less, preferably 50 massppm or less; and the conductive filler is dispersed in the binder resin which comprises such an epoxy (meth)acrylate resin. The epoxy (meth)acrylate resin is preferably prepared by subjecting a starting compound (substrate) having a carbon-carbon double bond to epoxidation of the double bond with an oxidizing agent consisting of hydrogen peroxide, and then subjecting the obtained epoxy compound to addition reaction with (meth)acrylic acid.
Abstract:
What is provided is a production method in which a vinyl acetate is reacted with a primary or secondary alcohol represented by Formula (1) and carbon monoxide to produce a first ester compound represented by Formula (2), and the first ester compound is reacted with an alcohol to produce a lactic acid ester represented by Formula (3) and an acetic acid ester represented by Formula (4).
Abstract:
Physiological processes in plants are regulated and reinforced, and crop vitality, yield, quality and post-harvesting storage life are improved. A plant vitalizer containing an amino acid or its salt and an oligosaccharide is applied to plants.