Abstract:
Coil assembly including a flux-control body having a magnetic material and a body side. The flux-control body includes a shield wall that defines a coil channel of the flux-control body that opens along the body side to an exterior of the flux-control body. The coil assembly also includes an electrical conductor positioned within the coil channel. The electrical conductor forms a power-transfer coil having co-planar windings that are configured to generate a magnetic flux within a spatial region that is adjacent to the body side. Adjacent windings are separated by the shield wall of the flux-control body. The shield wall controls a distribution of the magnetic flux experienced within the spatial region.
Abstract:
An article and process are described. The article includes a conductive heat-recoverable composite shield or a conductive heat-recovered composite shield formed from a conductive heat-recoverable composite shield. The conductive composite shield and/or the conductive heat-recovered composite shield formed from a conductive heat-recoverable composite shield comprises a non-conductive matrix and conductive particles within the non-conductive matrix. The article has a resistivity of less than 0.05 ohm·cm. A process of producing the conductive heat-recovered composite shield includes extruding the conductive heat-recoverable composite shield and heating the conductive heat-recoverable composite shield thereby forming the conductive heat-recovered composite shield.
Abstract:
A conductive composite formulation and an article at least partially formed from a conductive composite formulation are disclosed. The conductive composite formulation includes a polymer matrix and a colorant blended with the polymer matrix. The conductive composite formulation and the article each have a compound resistivity of between 0.0005 ohm·cm and 0.2 ohm·cm.
Abstract:
A composite formulation and electrical component are disclosed. The composite formulation includes a polymer matrix having at least 15% crystallinity and process-aid-treated copper-containing particles blended with the polymer matrix including higher aspect ratio particles and lower aspect ratio particles. The higher ratio particles and the lower ratio particles produce a decreased percolation threshold for the composite formulation when processed by extrusion or molding, the decreased percolation threshold being compared to a similar composition that fails to include the first particle and the second particles. The electrical component includes a composite product produced from the composite formulation and is selected from the group consisting of an antenna, electromagnetic interference shielding device, a connector housing, and combinations thereof.
Abstract:
A conductive particle is disclosed. The conductive particle includes an inner material including a first metal and an outer material surrounding the inner material. The outer material includes a second metal. An intermetallic compound is formed between the inner material and the outer material, the intermetallic compound having features from the inner material and the outer material. The conductive particle has a maximum dimension of less than 200 micrometers and the outer material has an outer material thickness of between 0.2 micrometers and 10 micrometers. The conductive particle is substantially devoid of silver.
Abstract:
Processes of applying conductive composites on flexible materials, transfer assemblies, and garments including conductive composites are disclosed. The processes include positioning the conductive composite relative to the flexible material, the conductive composite having a resin matrix and conductive filler, and heating the conductive composite with an iron thereby applying the conductive composite directly onto the flexible material. Additionally or alternatively, the processes include positioning the conductive composite relative to the clothing, and heating the conductive composite thereby applying the conductive composite on the clothing. The garments include the flexible material and the conductive composite positioned directly on the flexible material. The transfer assembly has the conductive composite on a transfer substrate. The transfer substrate is capable of permitting heating of the conductive composite through the transfer substrate, the heating being at a temperature that permits applying the conductive composite to the flexible material.
Abstract:
A composite formulation and a composite article are provided. The composite article includes at least two layers of a composite formulation including a polymer matrix and conductive particles distributed within the polymer matrix, the conductive particles forming, by volume, between 20% and 50% of the composite formulation. The conductive particles in each of the at least two layers include at least one morphology selected from the group consisting of fibrous, dendritic, and flake, and the morphology of the conductive particles in one of the at least two layers differs from the morphology of the conductive particles in another one of the at least two layers. The composite formulation includes a polymer matrix and between 30% and 45%, by volume, tin-coated copper conductive particles at a copper/tin ratio of between 3/1 and 3/2, the conductive particles including at least two morphologies selected from the group consisting of fibrous, dendritic, and flake.
Abstract:
Conductive composite compositions and circuit protection devices including a conductive composite composition are disclosed. The conductive composite composition includes a polymer material, a plurality of conductive particles, and a high melting point additive. The high melting point additive comprises at least 1% of the conductive composite, by volume of the total composition. The circuit protection device includes a body portion comprising a conductive composite composition, the conductive composite composition comprising a polymer material, a plurality of conductive particles, and at least 1%, by volume, of a high melting point additive loaded in the polymer material, and leads extending from the body portion, the leads arranged and disposed to electrically couple the circuit protection device to an electrical system. Also provided is a method of forming a conductive composite.
Abstract:
Cable shielding assemblies and processes of producing cable shielding assemblies are described. The cable shielding assemblies include a conductor and a conductive composite shield extending around at least a portion of the conductor, the conductive composite shield having a non-conductive matrix and conductive particles within the non-conductive matrix. The conductive composite shield has a resistivity of less than 0.05 ohm·cm. The processes of producing cable shielding assembles include positioning the conductive composite shield. The positioning is at least partially around a conductor, at least partially around a dielectric material, at least partially surrounded by a jacket material, or a combination thereof.
Abstract:
A composite formulation and composite product are disclosed. The composite formulation includes a polymer matrix having metal particles, the metal particles including dendritic particles and tin-containing particles. The metal particles are blended within the polymer matrix at a temperature greater than the melt temperature of the polymer matrix. The tin containing particles are at a concentration in the composite formulation of, by volume, between 10% and 36%, and the dendritic particles are at a concentration in the composite formulation of, by volume, between 16% and 40%. The temperature at which the metal particles are blended generates metal-metal diffusion of the metal particles, producing intermetallic phases, the temperature being at least the intermetallic annealing temperature of the metal particles.