Abstract:
The present disclosure relates to an integrated circuits device having a RRAM cell, and an associated method of formation. In some embodiments, the integrated circuit device has a lower metal interconnect layer surrounded by a lower ILD layer and a bottom electrode disposed over the lower metal interconnect layer. The bottom electrode has a lower portion surrounded by a bottom dielectric layer and an upper portion wider than the lower portion. The bottom dielectric layer is disposed over the lower metal interconnect layer and the lower ILD layer. The integrated circuit device also has a RRAM dielectric with a variable resistance located on the bottom electrode, and a top electrode located over the RRAM dielectric. The integrated circuit device also has a top dielectric layer located over the bottom dielectric layer abutting sidewalls of the upper portion of the bottom electrode, the RRAM dielectric, and the top electrode.
Abstract:
A split-gate flash memory cell for improved erase speed is provided. An erase gate and a floating gate are laterally spaced over a semiconductor substrate. The floating gate has a height increasing towards the erase gate, a concave sidewall surface neighboring the erase gate, and a tip defined an interface of the concave sidewall surface and an upper surface of the floating gate. A control gate and a sidewall spacer are arranged over the upper surface of the floating gate. The control gate is laterally offset from the tip of the floating gate, and the sidewall spacer is laterally arranged between the control gate and the tip. A method for manufacturing the split-gate flash memory cell is also provided.
Abstract:
The present disclosure relates to an integrated circuit (IC), including, a flash memory device region, including a pair of split-gate flash memory cells arranged over a semiconductor substrate. The pair of split gate flash memory cells respectively have a control gate (CG) including a polysilicon gate and an overlying silicide layer. A periphery circuit including, one or more high-k metal gate (HKMG) transistors are arranged over the semiconductor substrate at a position laterally offset from the flash memory device region. The one or more HKMG transistors have a metal gate electrode with an upper surface that is lower than an upper surface of the silicide layer. A method of manufacturing the IC is also provided.
Abstract:
Some embodiments relate to a memory device with an asymmetric floating gate geometry. A control gate is arranged over a floating gate. An erase gate is arranged laterally adjacent the floating gate, and is separated from the floating gate by a tunneling dielectric layer. A sidewall spacer is arranged along a vertical sidewall of the control gate, and over an upper surface of the floating gate. A portion of the floating gate upper surface forms a “ledge,” or a sharp corner, which extends horizontally past the sidewall spacer. A sidewall of the floating gate forms a concave surface, which tapers down from the ledge towards a neck region within the floating gate. The ledge provides a faster path for tunneling of the electrons through the tunneling dielectric layer compared to a floating gate with a planar sidewall surface. The ledge consequently improves the erase speed of the memory device.
Abstract:
Some embodiments of the present disclosure relate to a split gate memory cell which includes a select gate and a memory gate. The select gate has a planar upper surface disposed over a semiconductor substrate and is separated from the substrate by a gate dielectric layer. The memory gate has a planar upper surface arranged at one side of the select gate and is separated from the substrate by a charge trapping layer. The charge trapping layer extends under the memory gate. A first spacer is disposed above the memory gate and is separated from the memory gate by a first dielectric liner. The first dielectric liner extends upwardly along an upper sidewall of the charge trapping layer; and source/drain regions are disposed in the semiconductor substrate at opposite sides of the select gate and the memory gate.
Abstract:
A method of manufacturing a split gate flash memory cell is provided. A select gate is formed on a semiconductor substrate. A sacrificial spacer is formed laterally adjacent to the select gate and on a first side of the select gate. A charge trapping layer is formed lining upper surfaces of the select gate and the sacrificial spacer, and further lining a sidewall surface of the select gate on a second side of the select gate that is opposite the first side of the select gate. A memory gate is formed over the charge trapping layer and on the second side of the select gate. The sacrificial spacer is removed. The resulting semiconductor structure is also provided.
Abstract:
A semiconductor structure for a split gate flash memory cell device with a hard mask having an asymmetric profile is provided. A semiconductor substrate of the semiconductor structure includes a first source/drain region and a second source/drain region. A control gate and a memory gate, of the semiconductor structure, are spaced over the semiconductor substrate between the first and second source/drain regions. A charge trapping dielectric structure of the semiconductor structure is arranged between neighboring sidewalls of the memory gate and the control gate, and arranged under the memory gate. A hard mask of the semiconductor structure is arranged over the control gate and includes an asymmetric profile. The asymmetric profile tapers in height away from the memory gate. A method for manufacturing a pair of split gate flash memory cell devices with hard masks having an asymmetric profile is also provided.
Abstract:
The present disclosure relates to a method of embedding an ESF3 memory in a HKMG integrated circuit that utilizes a replacement gate technology. The ESF3 memory is formed over a recessed substrate which prevents damage of the memory control gates during the CMP process performed on the ILD layer. An asymmetric isolation zone is also formed in the transition region between the memory cell and the periphery circuit boundary.
Abstract:
In a method of forming a split gate memory cell, a sacrificial spacer is formed over a semiconductor substrate. A first layer of conductive material is formed over a top surface and sidewalls of the sacrificial spacer. A first etch back process is formed on the first layer of conductive material to expose the top surface of the sacrificial spacer and upper sidewall regions of the sacrificial spacer. A conformal silicide-blocking layer is then formed which extends over the etched back first layer of conductive material and over the top surface of the sacrificial spacer.
Abstract:
A microelectromechanical system (MEMS) structure and method of forming the MEMS device, including forming a first metallization structure over a complementary metal-oxide-semiconductor (CMOS) wafer, where the first metallization structure includes a first sacrificial oxide layer and a first metal contact pad. A second metallization structure is formed over a MEMS wafer, where the second metallization structure includes a second sacrificial oxide layer and a second metal contact pad. The first metallization structure and second metallization structure are then bonded together. After the first metallization structure and second metallization structure are bonded together, patterning and etching the MEMS wafer to form a MEMS element over the second sacrificial oxide layer. After the MEMS element is formed, removing the first sacrificial oxide layer and second sacrificial oxide layer to allow the MEMS element to move freely about an axis.