Abstract:
A wafer polishing process includes polishing a central area on the back side of a wafer, polishing a peripheral area on the back side of the wafer, buffing the central area, and buffing the peripheral area. The process can significantly reduce scratch-related wafer breakage, can correct focus spots on wafers, and can replace cleaning processes that use chemical etchants. Polishing and buffing can include polishing and buffing the bevel region. Further improvements include polishing with abrasive pads having a soft backing, polishing or buffing with pads having relatively soft abrasive particles, polishing or buffing with abrasive pads made from abrasive particles that have been sorted and selected for regularity of shape, irrigating the surface being polished or buffed with an aqueous solution that includes a friction-reducing agent, and buffing with abrasive pads having 20k or finer grit or non-abrasive pads.
Abstract:
The present disclosure, in some embodiments, relates to a brush cleaning apparatus. The brush cleaning apparatus includes a wafer support configured to support a wafer. The brush cleaning apparatus also includes a cleaning brush including a porous material coupled to a core material. An uppermost surface of the porous material defines a planar cleaning surface. A first nozzle is configured to apply a first cleaning liquid directly between the wafer and the planar cleaning surface of the cleaning brush.
Abstract:
The present disclosure, in some embodiments, relates to a polishing system. The polishing system includes a carrier head configured to enclose a wafer. The carrier head has a retainer ring configured to laterally surround the wafer and an abrasive structure that partially covers a lower surface of the retainer ring. A membrane support is surrounded by the retainer ring and defines one or more ports. One or more chambers are coupled to the one or more ports and are defined by the membrane support and a flexible membrane having a lower surface configured to contact the wafer.
Abstract:
A method of processing a wafer is disclosed. The method includes, in some embodiments, causing a relative movement between a cleaning brush and a wafer. During the relative movement, a planar cleaning surface of the cleaning brush is brought into contact with a surface of the wafer to remove contaminants from the surface of the wafer. A first size of the cleaning brush, in a plan view, is larger than a second size of the wafer in the plan view.
Abstract:
In some embodiments, the present disclosure relates to a method of performing a planarization process. The method may be performed by placing a wafer between a carrier head and an upper surface of a polishing pad. The carrier head has a retainer ring configured to surround the wafer, and the retainer ring has an abrasive structure configured to contact the upper surface of the polishing pad. Pressures within one or more chambers surrounded by the carrier head are independently regulated. The one or more chambers have one or more interior surfaces having a flexible membrane. The flexible membrane has a lower surface configured to contact the wafer. At least one of the carrier head or the polishing pad are moved relative to the other, and a roughness of the upper surface of the polishing pad is maintained within a predetermined range by using the abrasive structure of the retainer ring.
Abstract:
Some embodiments are directed to a wafer polishing tool. The wafer polishing tool includes a first polisher, a second polisher downstream of the first polisher, a third polisher downstream of the second polisher, and a fourth polisher downstream of the third polisher. The first polisher receives a wafer having a front side and a back side with integrated circuit component devices disposed on the front side of the wafer, and polishes a center region on the back side of the wafer. The second polisher receives the wafer via transporting equipment and buffs the center region of the back side of the wafer. The third polisher receives the wafer via the transporting equipment and polishes a back side edge region of the wafer. The fourth polisher receives the wafer via the transporting equipment and buffs the back side edge region of the wafer.
Abstract:
The present disclosure provides a method of manufacturing an integrated circuit device in some embodiments. In the method, a semiconductor substrate is processed through a series of operations to form a topographically variable surface over the semiconductor substrate. The topographically variable surface varies in height across the semiconductor substrate. A polymeric bottom anti-reflective coating (BARC) is provided over the topographically variable surface. Chemical mechanical polishing is performed to remove a first portion of the BARC, and etching effectuates a top-down recessing of the BARC.
Abstract:
A wafer polishing process includes polishing a central area on the back side of a wafer, polishing a peripheral area on the back side of the wafer, buffing the central area, and buffing the peripheral area. The process can significantly reduce scratch-related wafer breakage, can correct focus spots on wafers, and can replace cleaning processes that use chemical etchants. Polishing and buffing can include polishing and buffing the bevel region. Further improvements include polishing with abrasive pads having a soft backing, polishing or buffing with pads having relatively soft abrasive particles, polishing or buffing with abrasive pads made from abrasive particles that have been sorted and selected for regularity of shape, irrigating the surface being polished or buffed with an aqueous solution that includes a friction-reducing agent, and buffing with abrasive pads having 20k or finer grit or non-abrasive pads.
Abstract:
A wafer polishing process includes polishing a central area on the back side of a wafer, polishing a peripheral area on the back side of the wafer, buffing the central area, and buffing the peripheral area. The process can significantly reduce scratch-related wafer breakage, can correct focus spots on wafers, and can replace cleaning processes that use chemical etchants. Polishing and buffing can include polishing and buffing the bevel region. Further improvements include polishing with abrasive pads having a soft backing, polishing or buffing with pads having relatively soft abrasive particles, polishing or buffing with abrasive pads made from abrasive particles that have been sorted and selected for regularity of shape, irrigating the surface being polished or buffed with an aqueous solution that includes a friction-reducing agent, and buffing with abrasive pads having 20 k or finer grit or non-abrasive pads.
Abstract:
A method for fabricating an integrated circuit is provided. The method includes depositing a first polish stop layer above a memory device, in which the first polish stop layer has a first portion over the memory device and a second portion that is not over the memory device; removing the second portion of the first polish stop layer; depositing an inter-layer dielectric layer over the first polish stop layer after removing the second portion of the first polish stop layer; and polishing the inter-layer dielectric layer until reaching the first portion of the first polish stop layer.