摘要:
A substrate and a semiconductor chip are connected by means of flip-chip interconnection. Around connecting pads of the substrate and input/output terminals of the semiconductor chip, an underfill material is injected. The underfill material is a composite material of filler and resin. Also, a first main surface of the substrate, which is not covered with the underfill material, and the side surfaces of the semiconductor chip are encapsulated with a molding material. The molding material is a composite material of filler and resin. An integrated body of the substrate and the semiconductor chip, which are covered with the molding material, is thinned from above and below.
摘要:
In a capacitor producing method, a bottom electrode, a thin-film dielectric, and a top electrode are deposited on a substrate so as to form a capacitor, wherein defects including particles and electrical short-circuits between the bottom electrode and the top electrode are detected before the capacitor is divided into capacitor cells. Next, defects such as particles and electrical short-circuits between the bottom electrode and the top electrode are removed before the capacitor is divided into capacitor cells.
摘要:
A user uses part data forming means 101 and module data forming means 102 to input the actual dimension, physical constants and mesh dividing number for fundamental shapes which are registered in advance, thereby forming parts, and then indicates the relative position between the parts to form the entire shape of an assembly of plural parts without paying attention to coincidence or non-coincidence of nodal points. Data converting means 104 divides the shape of each part thus assembled according to the indicated mesh divisional number to generate element data and nodal point data. Further, it generates a constraint equation for connecting nodal points which are non-connected between neighboring parts, and forms an analysis model 401. A finite element method analyzer 105 uses approximate calculation means 106 to approximate a non-connected nodal point displacement from a nodal point displacement of neighboring structural elements on the basis of the constraint equation.
摘要:
An element joining pad for a semiconductor device mounting board includes a thick-film metalized layer, a barrier layer, and a Ni plating layer. The thick-film metalized layer is selectively formed on a low-temperature sintered board and consists of one of a metal and an alloy which can be sintered at 500.degree. C. or more and 1,200.degree. C. or less. The barrier layer is formed on the thick-film metalized layer and constituted by one of a Rh plating layer and a Ru plating layer. The Ni plating layer is formed on the barrier layer.
摘要:
In a capacitor producing method, a bottom electrode, a thin-film dielectric, and a top electrode are deposited on a substrate so as to form a capacitor, wherein defects including particles and electrical short-circuits between the bottom electrode and the top electrode are detected before the capacitor is divided into capacitor cells. Next, defects such as particles and electrical short-circuits between the bottom electrode and the top electrode are removed before the capacitor is divided into capacitor cells.
摘要:
A substrate (1) and a semiconductor chip (5) are connected by means of flip-chip interconnection. Around connecting pads (3) of the substrate (1) and input/output terminals (10) of the semiconductor chip (5), an underfill material (7) is injected. The underfill material (7) is a composite material of filler and resin in which the maximum particle diameter of the filler is 5 μm or below and whose filler content is 40 to 60 wt %. Also, a first main surface of the substrate (1), which is not covered with the underfill material (7), and the side surfaces of the semiconductor chip (5) are encapsulated with a molding material (8). The molding material (8) is a composite material of filler and resin whose filler content is over 75 wt % and in which the glass transition temperature of the resin is over 180° C. An integrated body of the substrate (1) and the semiconductor chip (5), which are covered with the molding material (8), is thinned from above and below.
摘要:
There is provided a thin film capacitor including (a) a lower electrode, (b) an insulating layer formed burying the lower electrode therein and formed with a via-hole reaching the lower electrode, (c) a dielectric layer formed on an inner sidewall of the via-hole and covering an exposed surface of the lower electrode therewith, and (d) an upper electrode surrounded by the dielectric layer. In accordance with the thin film capacitor, the upper electrode is formed to be buried in the via-hole formed above the lower electrode. Hence, it is possible to prevent short-circuit between the upper and lower electrodes, and degradation of the dielectric layer during fabrication of a thin film capacitor, both of which enhances reliability of a capacitor. In addition, a multi-layered wiring structure could be readily fabricated on the thin film capacitor.
摘要:
Disclosed is a substrate for a semiconductor package in which leakage of radiation noise from a gap between a semiconductor element and a mounting substrate can be prevented. The substrate for the semiconductor package includes a coplanar waveguide including a signal and ground electrodes on the mounting substrate, the signal electrode flip-chip connected to the semiconductor element, the ground electrodes arranged on both sides of the signal electrode with intervals therebetween. A step part is formed in the ground electrodes in an outer circumferential part of a mounting region of the semiconductor element, the step part having a larger distance between upper surfaces of the mounting substrate and the ground electrode in the outer circumferential part of the mounting region than such distance in the mounting region, and an insulator for covering the signal electrode in the outer circumferential part of the mounting region is formed.
摘要:
A substrate (1) and a semiconductor chip (5) are connected by means of flip-chip interconnection. Around connecting pads (3) of the substrate (1) and input/output terminals (10) of the semiconductor chip (5), an underfill material (7) is injected. The underfill material (7) is a composite material of filler and resin in which the maximum particle diameter of the filler is 5 μm or below and whose filler content is 40 to 60 wt %. Also, a first main surface of the substrate (1), which is not covered with the underfill material (7), and the side surfaces of the semiconductor chip (5) are encapsulated with a molding material (8). The molding material (8) is a composite material of filler and resin whose filler content is over 75 wt % and in which the glass transition temperature of the resin is over 180° C. An integrated body of the substrate (1) and the semiconductor chip (5), which are covered with the molding material (8), is thinned from above and below.