Abstract:
A semiconductor die comprising a terminal structure for an active power device. The terminal structure comprises a metallic layer arranged to be electrically coupled between the active power device and an external contact of an integrated circuit package, a conductive sub-structure extending in parallel with the metallic layer, and located such that, when mounted within an integrated circuit device, the conductive sub-structure lies between the metallic layer and a reference voltage plane, and interconnecting elements extending between the metallic layer and the conductive sub-structure and electrically coupling the metallic layer to the conductive sub-structure. The plurality of interconnecting elements comprise first and second interconnecting elements extending between first and second lateral end regions of the metallic layer and the conductive sub-structure respectively such that the first and second interconnecting elements are laterally spaced with respect to the direction of travel of the fundamental signal for the active power device.
Abstract:
A method of recovery from a time-synchronization loss in a communication unit between a first processor supporting physical layer communications and a second processor supporting layer-2 communications is described. The method comprises: detecting, by the first processor, that a loss of sync has occurred between the first and second processors; in response to said detecting, stopping sending subsequent physical layer messages from the first processor to the second processor, for example to allow the second processor to consume any old pending messages; re-starting a messaging process by the first processor by sending at least one new message to the second processor with updated System Frame Number, SFN, and Sub-Frame, SF, counter value; and receiving at the first processor at least one subsequent response message from the second processor acknowledging receipt of at least one new message with an indication of the received and updated SFN and SF counter value of that message thereby confirming synchronization being restored.
Abstract:
A method for achieving clock timing closure in an integrated circuit (IC) design includes designing an IC using one or more component cells selected from a cell library to produce the design. A timing analysis of the design is performed to determine if timing constraints are satisfied. When a given time constraint is not satisfied, a component cell selected from the cell library is replaced with a replacement cell that has the same function and the same footprint as the replaced component cell, but has a different timing characteristic based on the phase relationship of the signal being capacitively coupled to enhance the likelihood of meeting the given time constraint. The timing analysis is repeated with the replacement cell. The process of replacing component cells and performing timing analysis may be iterative.
Abstract:
A phase locked loop circuit includes a voltage controlled oscillator, VCO, configured to receive an oscillator tuning voltage; a phase detector configured to receive an input signal and a reference signal and generate a phase difference pulse signal that is varied in accordance with the oscillator tuning voltage; a loop filter having an input and an output; and a level shifter circuit coupled to an output of the phase detector and the loop filter input and configured to apply a level shift to the phase difference pulse signal such that the level shift is configured to compensate VCO gain and the loop filter averages the phase difference pulse signal to output an averaged signal to the VCO.
Abstract:
An ESD protection structure comprising a thyristor structure. The thyristor structure is formed from a first P-doped section comprising a first P-doped well formed within a first region of a P-doped epitaxial layer, a first N-doped section comprising a deep N-well structure, a second P-doped section comprising a second P-doped well formed within a second region of the epitaxial layer, and a second N-doped section comprising an N-doped contact region formed within a surface of the second P-doped well. The ESD protection structure further comprises a P-doped region formed on an upper surface of the deep N-well structure and forming a part of the second P-doped section of the thyristor structure.
Abstract:
Temperature sensing circuitry implemented on a semiconductor integrated circuit that senses the temperature at a site, digitizes the sensed temperature, and then outputs a signal representing such a sensed temperature. The temperature sensing circuitry converts a voltage signal that is proportional to the temperature to a frequency-based signal, which is converted to a digital bit value. A scalar factor is applied to another voltage signal that is inversely proportional to the temperature to produce a scaled voltage signal. The scaled voltage signal is converted to a second frequency-based signal, which is converted to a digital bit value, and then the two digital bit values are compared. The temperature is determined when the digital bit values substantially match.
Abstract:
A processor uses a dedicated buffer to reduce the amount of time needed to execute memory copy operations. For each load instruction associated with the memory copy operation, the processor copies the load data from memory to the dedicated buffer. For each store operation associated with the memory copy operation, the processor retrieves the store data from the dedicated buffer and transfers it to memory. The dedicated buffer is separate from a register file and caches of the processor, so that each load operation associated with a memory copy operation does not have to wait for data to be loaded from memory to the register file. Similarly, each store operation associated with a memory copy operation does not have to wait for data to be transferred from the register file to memory.
Abstract:
In a network control system, a method for managing traffic flow in a distributed controller environment includes stamping a packet to be forwarded between data forwarding units with flow control information based on an action set associated with a flow entry pushed by a logical controller. The packet is stamped by one or more of the data forwarding units. The flow control information is used to forward the packet between data forwarding units, thereby defining a datapath packet flow.
Abstract:
A device includes a semiconductor substrate having a surface with a trench, first and second conduction terminals supported by the semiconductor substrate, a control electrode supported by the semiconductor substrate between the first and second conduction terminals and configured to control flow of charge carriers during operation between the first and second conduction terminals, and a Faraday shield supported by the semiconductor substrate and disposed between the control electrode and the second conduction terminal. At least a portion of the Faraday shield is disposed in the trench.
Abstract:
A radiation device and related method are presented. The radiation device includes a body. The body includes a threaded portion configured to engage with a threaded opening in an engine and an open interior volume. The radiation device includes a ground electrode coupled to the body, a substrate disposed within the open interior volume in the body, and a radio frequency generator on the substrate. The radio frequency generator is configured to receive an input signal and, in response to the input signal, generate plasma energy between the body and the ground electrode.