Abstract:
An electrostatic atomizing device includes an atomizing electrode which generates charged fine water particles negatively charged in the form of mist, by generating an electric field when a high negative voltage is applied thereto in a state in which water is supplied; a water supply portion which supplies the water to the atomizing electrode; a discharge detection portion which detects whether negative ion discharge, indicating discharge in which only negative ions are generated without generating the charged fine water particles, is occurring at the atomizing electrode or not; and a control portion which reduces the electric field intensity of the electric field generated by the atomizing electrode when the discharge detection portion detects the occurrence of the negative ion discharge.
Abstract:
An oxidation and reduction fine particles generator includes an atomization electrode, a water feeder for supplying water to the atomization electrode and a high voltage generator, and also includes a switch device and a controller. The switch device changes an operation mode to an oxidation mode or a reduction mode. The controller generates negatively charged fine water particles including radicals through electrostatic atomization by applying a high voltage to water supplied to the atomization electrode in the oxidation mode. The controller also inactivates and activates the water feeder and the high voltage generator, respectively to generate reduction fine particles from the atomization electrode by dry discharge in the reduction mode.
Abstract:
A voltage application device includes a voltage application circuit. The voltage application circuit applies application voltage between discharge electrode and counter electrode which face each other with a clearance left from each other to generate a discharge. The voltage application device forms discharge path partially and dielectrically broken between discharge electrode and counter electrode when a discharge is generated. Discharge path includes first dielectric breakdown region formed around discharge electrode, and second dielectric breakdown region formed around counter electrode.
Abstract:
An integrated liquidjet system capable of stripping, prepping and coating a part includes a cell defining an enclosure, a jig for holding the part inside the cell, an ultrasonic nozzle having an ultrasonic transducer for generating a pulsed liquidjet, a coating particle source for supplying coating particles to the nozzle, a pressurized liquid source for supplying the nozzle with a pressurized liquid to enable the nozzle to generate the pulsed liquidjet to sequentially strip, prep and coat the part, a high-voltage electrode and a ground electrode inside the nozzle for charging the coating particles, and a human-machine interface external to the cell for receiving user commands and for controlling the pulsed liquidjet exiting from the nozzle in response to the user commands.
Abstract:
A method of manufacturing optoelectronic components includes spraying a fluorescent layer of an optoelectronic component onto a substrate, the substance or the substance mixture of the fluorescent layer including an electric charge when sprayed on, and wherein the electrically charged substance or the at least partially electrically charged substance mixture includes a larger electric potential when the fluorescent layer is sprayed on than at least one area of the substrate; and locally adjusting the thickness of the fluorescent layer of the sprayed-on fluorescent substance when spraying on the fluorescent layer onto the substrate by an electric potential gradient.
Abstract:
An oscillator (100) for providing an oscillating voltage for a powder spray coating device (200) is specified. With the aim of improving operational safety, the oscillator (100) as claimed in the invention has a first signal generator (10) for generating an intermediate circuit voltage (11), a second signal generator (20) for generating a modulation signal (21) and a modulation signal isolating element (61), connected to the second signal generator (20), while a first voltage monitoring device (60) is also provided, designed for continuously measuring the oscillator voltage (34), comparing it with at least one specified or specifiable oscillator voltage reference value and, if a first comparison criterion is satisfied, outputting a modulation isolating signal (80) to the modulation signal isolating element (61).
Abstract:
An oxidation and reduction fine particles generator includes an atomization electrode, a water feeder for supplying water to the atomization electrode and a high voltage generator, and also includes a switch device and a controller. The switch device changes an operation mode to an oxidation mode or a reduction mode. The controller generates negatively charged fine water particles including radicals through electrostatic atomization by applying a high voltage to water supplied to the atomization electrode in the oxidation mode. The controller also inactivates and activates the water feeder and the high voltage generator, respectively to generate reduction fine particles from the atomization electrode by dry discharge in the reduction mode.
Abstract:
An electrostatic atomizer includes an atomizing electrode, a water supply unit for supplying water to the atomizing electrode, a high voltage power circuit and a control unit. The high voltage power circuit applies a high voltage to the atomizing electrode to electrostatically atomizing water supplied to the atomizing electrode and to generate electrically charged water particles. The control unit controls the high voltage power circuit such that the voltage applied to the atomizing electrode is gradually increased at the time of starting the electrostatic atomizer. Further, the control unit may control the high voltage power circuit such that the voltage is increased to a target voltage in steps at the time of starting the electrostatic atomizer, and an increment of the voltage at each step is decreased as the voltage approaches the target voltage.
Abstract:
The electrostatically atomizing device in this invention comprises an emitter electrode, a water supply means, a high voltage source, and an atomization detecting means and further comprises a controller. The water supply means is configured to supply water to the emitter electrode. The high voltage source is configured to apply a high voltage to the emitter electrode so as to electrostatically atomize the water on the emitter electrode. The atomization detecting means is configured to detect a condition where the water is electrostatically atomized from the emitter electrode. The controller is configured to apply a starting voltage upon energization of the device. The controller is configured to apply an operating voltage upon recognition of the condition. The starting voltage is configured to be higher than the operating voltage. With this configuration, it is possible to obtain the electrostatically atomizing device which is configured to generate a mist of charged minute water particles immediately upon energization of the electrostatically atomizing device. It is possible to obtain the electrostatically atomizing device which is configured to generate the mist of the charged minute water particles stably upon recognition of the condition.