Abstract:
The invention relates to a process and apparatus for treating biogenic residues, particularly sludges, preferably in the area of a clarification plant. Biogenic residues with a variable dry substance are subjected to aerobic drying until an energy-independent thermal treatment can be carried out. During the drying process, evaporated water is discharged in an odor-free condition without releasing freely volatile components, the dried sludge is intermediately stored a number of times and then utilized in preferably a number of successive thermal treatment steps. The two-stage cleaning of the stream of waste gas includes a dust collection unit and an adsorption unit. The waste heat is recycled through a heat exchanger to generate heat and electricity. The apparatus for carrying out the process includes a wet sludge storage container (1), a low temperature drying system (2), storage containers (3, 5) for intermediate storage of the dried biogenic residues, and a thermal treatment system with one or more thermal treatment steps (7, 8). Cleaning of the flue gas takes place preferably by means of a primary cleaning step (10) and a secondary cleaning step (11) for adsorption, for example, with clarified water. Energy recovery (9) from the hot waste gas is ideally carried out before the flue gas cleaning.
Abstract:
A method and apparatus for conversion of solid and liquid fuels to a synthesis gas, steam and/or electricity in which about 10% to about 40% of a solid fuel and/or a liquid fuel is introduced into a gasifier and gasified, resulting in formation of a synthesis gas. The remaining portion of the solid fuel and/or liquid fuel is introduced into a first stage of a multi-stage combustor, resulting in formation of products of combustion and ash and/or char. The synthesis gas is introduced into a second stage of the multi-stage combustor disposed downstream of the first stage and overfire oxidant is introduced into a third stage of the multi-stage combustor disposed downstream of the second stage. The ash and/or char from the multi-stage combustor is then recycled into the gasifier.
Abstract:
The system for producing combustion ash of cellulose-containing wastes, provided with a kneading device 3 for kneading cellulose-containing wastes with a prescribed amount of liquid fuel oil, a molding device 5 for molding said kneaded mixture, and a combustion furnace 7 for burning said moldings, is characterized in that the humidity conditioning furnace 6 for adjusting the water content of said moldings is arranged between said molding device and said combustion furnace. Since the water content of said moldings is adjusted by the humidity conditioning furnace at the time of burning said moldings, the organic substances (cellulose or the like) are burned almost perfectly. Consequently, the present invention has the advantage of being able to produce combustion ash of good quality without generating such combustion residue as graphite and black smoke.
Abstract:
A boiler recovers a soda component from pulp spent liquor and is able to prevent carry-over of unburnt char and deformation of a char bed configuration and to attain a stable combustion with low NOx generation. By regulating the combustion air supply, and feeding inert gas along a furnace side wall around the char bed, there are formed a combustion zone of reduction atmospheric field where air ratio in the surroundings of the char bed is 0.8 or less, a combustion zone of reduction atmospheric field where air ratio is 1.0 or less and unburnt components exist (including the case of a reduction atmospheric field where air ratio is 1.0 or less and unburnt components exist with the two combustion zones being combined together) and a combustion zone where combustion is completed.
Abstract:
Combustible is comminuted and dried, and metal and noncombustible are removed from the coarsely comminuted combustible. Then, the combustible is secondarily comminuted and separated into coarse combustible and fluff which is fine combustible. The coarse combustible of the separated combustible is fed onto a fire grate (2) of a refuse incinerator (1), and burned in flat bed combustion in a primary combustion chamber (4). On the other hand, the fluff is burned in suspended combustion in a secondary combustion chamber (7) with a combustion fluff burner (5) for incinerating combustible. Thus, refuse containing much plastics which is formed into fluff can be efficiently disposed of, whereby the amount of incineration is increased as a whole.
Abstract:
A method and configuration suited to feeding a water-containing fuel such as peat or brown coal into a pressurized space such as a pressurized dryer or a high-pressure gasifier. A fuel with a high moisture content requires drying in a dryer prior to gasification or combustion. In the dryer, the fuel is dewatered, whereby the separated water is discharged as steam from the dryer. The generated steam is separated from the fuel flow exiting the dryer and it can be routed as injection steam to a gas turbine. When a portion of the steam extracted from the fuel flow exiting the dryer is fed into the fuel entering the dryer or to a heat exchanger, which is employed for heating the fuel flow, a fuel of higher moisture content can be fed into the dryer, or alternatively, the moisture content of the fuel can be increased to improve the feed of the fuel. The method imparts no reduction of the economy of the energy generation process.
Abstract:
High temperature combustion apparatus incorporating a pneumatically suspended combustion zone and capable of supporting relatively high combustion temperatures, in excess of 2400.degree. C. (4352.degree. F.) for essentially total combustion with minimal pollutant production. The combustion apparatus may be employed for waste material incineration in general, toxic waste incineration, and for smokeless burning of wood and vegetation. The combustion apparatus may be employed in an efficient steam electric power generating plant which employs municipal solid waste as fuel, and/or in combination with a magnetohydrodynamic (MHD) electric generator. The pneumatically suspended combustion zone is created by having streams of combustion air directed upwardly from a floor grate and from the sides of a combustion chamber such that combustion occurs in a swirling turbulent mass which does not directly contact either the walls or the floor of the combustion chamber. The relatively high combustion temperatures are sustained by providing a high volume of excess combustion air, the same combustion air which maintains the pneumatically suspended combustion zone. High combustion temperatures are contained with little use of refractory materials, and without melting the combustion chamber sidewalls.
Abstract:
Combustible gases from a solid fuel are produced by pyrolyzing the fuel in a pyrolyzer which also produces carbonaceous material. The carbonaceous material from the pyrolyzer is combusted in a furnace to produce combustion products that include hot flue gases and ash particulate. The combustion products are separated into a plurality of streams, one of which contains flue gases, and another of which contains hot ash which is directed into the pyrolyzer. Finally, the stream of flue gases from the furnace is used to dry the fuel that is supplied to said pyrolyzer.
Abstract:
A method for the destruction of contaminated waste material comprising the steps of sufficiently heating the waste material in an oxygen deficient atmosphere to pyrolyze the material thereby producing a volatile fuel gas stream and a decontaminated solid residue, separately removing the fuel gas stream and the decontaminated solid residue, adjusting the stoichiometric ratio of the fuel gas stream reactant components for combustion downstream, oxidatively combusting the adjusted fuel gas stream to produce a low velocity, low oxygen gas stream, and a high velocity, low oxygen carrier gas stream, recycling at least a portion of the high velocity, low oxygen carrier gas stream for direct contact with the waste material to provide heat for pyrolysis of the same, contacting at least a portion of the low velocity, low oxygen carrier gas stream with water to produce an oxygen rich, substantially inert, heat exchange gas stream and indirectly heating the contaminated material with the heat exchange gas stream to provide supplemental heat.
Abstract:
This invention comprises a combined cellulose sludge dryer and burner in which the drying procedure is positively and automatically controlled in response to the moisture content of the dewatered raw sludge supplied to the dryer headbox and carried through a drying chamber to discharge a dried sludge having but a 15% moisture content and suitable to be burned to provide the hot air for the drying procedure. With the sludge being critical as to charring, a temperature of 300 degrees Fahrenheit to prevent pre-burning and charring of the sludge has to be maintained in the drying chamber and positive and automatic control for the hot air to maintain the temperature is done by checking differences between input and output temperatures of the dryer and diluting the air produced by the burner by the use of a heat exchanger and air dampers. The extracted wet air from the drying chamber and diverted over-supply of air to the drying chamber are delivered through a scrubber and chimney to the atmosphere. A series of opposing hot air and wet air extracting ducts are provided in the drying chamber for the handling of the drying air to direct it from beneath the travelling wire screen conveyor through the sludge particles thereon and passed to the extracting air ducts thereabove whereby to increase speed for drying sludge and the efficiency of temperature control equipment. Programmable computers are included to establish the control requirements and maintain the desired temperatures throughout the drying and burning operations.