Abstract:
A method of manufacturing semiconductor devices is disclosed. The method includes determining fractured shots that do not overlap each other based on a final pattern; determining overlapping shots that are shots that overlap each other based on the final pattern; generating area difference data by comparing the areas of the overlapping shots and the fractured shots with each other; calculating a radiation influenced pattern based on the area difference data; and correcting the overlapping shots based on the radiation influenced pattern.
Abstract:
A method for scanning a specimen 105 with beams 102 of charged particles of a source group. Thereby, a plurality of target points 402 is scanned with a charged particle beam emitted by a source 106 and the same plurality of target points is scanned with at least one further charged particle beam emitted by at least one further source. Further, the charged particle beams from the source and the at least one further source are emitted on the same target point at different times. Additionally, a multiple charged particle beam source and a data feed system are provided. A source array 104 comprises at least one logical emitting unit 106, wherein patterning information is shifted in a shift circuit 140, and redundancy emitting units 106, wherein individual redundancy emitting units obtain patterning information from the shift register.
Abstract:
A technique of exposing a resist with electron beams having different accelerating voltages is used in a method for manufacturing a photomask. In a first exposing step, an electron beam resist on a substrate is exposed with an electron beam having an accelerating voltage low enough to keep the electron beam resist from developing. In a second exposing step, the electron beam resist is exposed with an electron beam having a higher accelerating voltage. Through the first and second exposing steps, the electron beam resist absorbs an amount of energy greater than the threshold energy, i.e., enough energy to allow the photoresist to be developed. This technique is applied to a resist coating at least one of an opaque layer and a phase shift film form on a transparent substrate. After the resist is developed, the opaque layer and/or phase shift film is etched using the patterned resist as an etching mask. The technique can also be applied to the forming of test patterns used in producing data by which the dosages of the electron beams used to manufacture the photomask are selected. The use of the two electron beams in exposing the resist facilitates the production of a pattern having a high degree of resolution in a short amount of time.
Abstract:
A charged particle beam exposure method capable of suppressing the degradation of dimensional accuracy of exposed pattern elements due to the proximity effect and Coulomb effect defocusing. The charged particle beam exposure method is a method in which a charged particle beam is irradiated to a mask to transfer an image of a pattern formed on the mask onto a radiation-sensitive substrate. The method includes dividing one exposed pattern element which is to be formed on the radiation-sensitive substrate into a plurality of regions including a region lying at a marginal portion of the exposed pattern element and at least one other region lying inside the marginal portion, and forming patterns respectively corresponding to the regions on the mask, and further adjusting, when the patterns are to be transferred onto the radiation-sensitive substrate, the transfer positions of images of the patterns corresponding to the regions so that the divided regions are combined together to form the exposed pattern element on the radiation-sensitive substrate.
Abstract:
A complete lithographic exposure pattern is formed in accordance with this invention by forming part of the complete pattern with electron beam radiation and forming the remaining part with light radiation. The electron beam exposure pattern part delineates all of the edges of the desired complete pattern while the optical exposure pattern part fills in any remaining regions, together forming the desired complete exposure pattern. Since all edges are delineated by electron beam radiation, any radiation sensitive layer exposed to the complete pattern will develop edges characteristic of an electron beam pattern exposure.Electron beam exposure system thruput is improved because the whole pattern is not exposed by electron beam. Preferably, the exposure width of the electron beam edge delineation is on the order of the minimum linewidth of the pattern, so that proximity effects will be automatically reduced or eliminated without requiring computation of the exposure contribution from adjacent shapes in the pattern due to lateral scattering effects and without requiring any variation in the applied electron beam exposure dose. Use of a wider exposure width for electron beam delineation of pattern edges has the advantage that alignment tolerance of the optical exposure pattern part with respect to the electron beam exposure pattern part is increased.
Abstract:
A method of electron beam exposure comprising selectively exposing a resist film on a substrate a plurality of times with an electron beam whose dose is lower than a desired dose sufficient to produce a difference in molecular weight between the exposed area and the nonexposed area, the cumulative dose corresponding to said desired dose.
Abstract:
In a process for projecting or irradiating a pattern on a resist film or the like on a substrate such as a semiconductive wafer, the entire area of the resist film is subjected to a pre-exposure at an intensity less than a sensitivity or a critical exposure level of the resist film at which the resist at a selected (exposed or unexposed) area may be completely dissolved away and then a desired pattern is projected or irradiated on the pre-exposed resist film. These steps may be reversed. In both cases, the apparent sensitivity of the resist film may be improved so that the pattern making time may become very short. An apparatus for carrying out the above process is also disclosed.
Abstract:
In a method of manufacturing a photo mask for lithography, circuit pattern data are acquired. A pattern density, which is a total pattern area per predetermined area, is calculated from the circuit pattern data. Dummy pattern data for areas having pattern density less than a threshold density are generated. Mask drawing data is generated from the circuit pattern data and the dummy pattern data. By using an electron beam from an electron beam lithography apparatus, patterns are drawn according to the mask drawing data on a resist layer formed on a mask blank substrate. The drawn resist layer is developed using a developing solution. Dummy patterns included in the dummy pattern data are not printed as a photo mask pattern when the resist layer is exposed with the electron beam and is developed.
Abstract:
A method and system for fracturing or mask data preparation are presented in which a set of shots is determined for a multi-beam charged particle beam writer. The edge slope of a pattern formed by the set of shots is calculated. An edge of the pattern which has an edge slope below a target level is identified, and the dosage of a beamlet in a shot in the set of shots is increased to improve the edge slope. The improved edge slope remains less than the target level.
Abstract:
A multi charged particle beam writing method includes performing ON/OFF switching of a beam by an individual blanking system for the beam concerned, for each beam in multi-beams of charged particle beam, with respect to each time irradiation of irradiation of a plurality of times, by using a plurality of individual blanking systems that respectively perform beam ON/OFF control of a corresponding beam in the multi-beams, and performing blanking control, in addition to the performing ON/OFF switching of the beam for the each beam by the individual blanking system, with respect to the each time irradiation of the irradiation of the plurality of times, so that the beam is in an ON state during an irradiation time corresponding to irradiation concerned, by using a common blanking system that collectively performs beam ON/OFF control for a whole of the multi-beams.