Abstract:
An apparatus for handling sample tubes is presented. The apparatus comprises a sample tube tray, a sample tube individualizer, a first conveyor, a second conveyor, a sample tube buffer, and a sample tube rack inserter. The sample tube tray stores sample tubes in bulk commodity. The sample tube individualizer sequentially unloads single sample tubes from the sample tube tray and sequentially provides the unloaded sample tubes to the first conveyor. The first conveyor conveys the sample tubes to the sample tube buffer. The sample tube buffer buffers the sample tubes provided by the first conveyor and provides buffered sample tubes to the second conveyor with a predeterminable, constant, sample tube rate. The second conveyor conveys the sample tubes to the sample tube rack inserter. The sample tube rack inserter inserts the sample tubes into a sample tube rack.
Abstract:
The present invention relates to a method for diagnosing and/or grading diastolic dysfunction or at least one structural or functional abnormality associated with diastolic dysfunction. The method comprises measuring the level of IGFBP7 (Insulin like growth factor binding protein 7) and, optionally, the level of at least one further marker in a patient suffering from heart failure, and comparing the level to a reference level. Further envisaged is a method of monitoring diastolic function in a patient suffering from heart failure. Also encompassed by the present invention are kits and devices adapted to carry out the method of the present invention.
Abstract:
An in vivo amperometric sensor is provided for measuring the concentration of an analyte in a body fluid. The sensor comprises a counter electrode and a working electrode, and the working electrode comprises a sensing layer which is generally water permeable and arranged on a support member adjacent to a contact pad. The sensing layer comprises an immobilized enzyme capable of acting catalytically in the presence of the analyte to cause an electrical signal. The sensing layer has an upper surface facing the body fluid and a lower surface facing away from the body fluid, and the immobilized enzyme is distributed within the sensing layer in such a way that the enzyme concentration in the middle between the upper and lower surfaces is at least as high as on the upper surface of the sensing layer.
Abstract:
Systems, kits, and methods for predicting the risk of an adverse event related to acute kidney injury AKI as a consequence of a surgical intervention in a subject. Embodiments of the system and methods include means and steps for determining an amount of liver-type fatty acid binding protein (L-FABP) in a sample, such as a urine-sample of a subject; comparing the amounts of the L-FABP with a reference amount, and predicting the risk of an adverse event related to acute kidney injury as a consequence of surgical intervention in the subject.
Abstract:
A measuring module for remission photometric analysis of one or a plurality of specimens is provided with the following features: a transmitter with a transmission channel for transmitting a measuring radiation to location of the specimen; a first focusing device for focusing the measuring radiation on the specimen; a receiver with a receiving channel to receive the radiation reflected by the specimen; a second focusing device made of plastic for focusing the measuring radiation reflected by the specimen onto the receiver, whereby the second focusing device further comprises a filter which is designed to filter a fluorescence radiation from the specimen excited by the measuring radiation.
Abstract:
An apparatus for determining a vertical position of an interface between a first component and a second component comprising different layers in a sample container comprises a first unit comprising a first emitting light, a first optics, and a first detector; a second unit vertically spaced from the first unit comprising a second emitting light, a second optics, and a second detector; a driving unit to move the first unit and the second unit relative to the sample container; a position sensing unit to output a position sensing signal indicative of a vertical position of the sample container; and a vertical position determining unit to calculate the vertical position of the interface.
Abstract:
A method and system for automatic in-vitro diagnostic analysis are described. The method comprises adding a first reagent type and a second reagent type to a first test liquid during a first and second cycle times respectively. The addition of the first reagent type to the first test liquid comprises parallel addition of a second reagent type to a second test liquid during the first cycle time. The addition of the second reagent type to the first test liquid comprises parallel addition of a first reagent type to a third test liquid during the second cycle time, respectively.
Abstract:
A reagent composition for releasing vitamin D compounds bound to vitamin D-binding protein, an in vitro method for the detection of a vitamin D compound in which the vitamin D compound is released from vitamin D-binding protein by the use of this reagent composition and the reagent mixture obtained in this manner. The use of the disclosed reagent composition to release vitamin D compounds as well as a kit for detecting a vitamin D compound which contains the reagent composition for releasing vitamin D compounds in addition to common detecting reagents.
Abstract:
The present invention relates to a method of specifically releasing a one or more members of a sub-group of objects from an entity, a method of detecting a subject's disease by detecting one or more members of a sub-group of biological entities indicative of the disease and a method of isolating one or more members of a sub-group of objects from a group of objects.
Abstract:
A method of operating a laboratory automation system is presented. The laboratory automation system comprises a plurality of laboratory stations and a plurality of sample container carriers. The sample container carriers carry one or more sample containers. The sample containers comprise samples to be analyzed by the laboratory stations. The system also comprises a transport plane. The transport plane supports the sample container carriers. The system also comprises a drive. The drive moves the sample container carriers on the transport plane. The method comprises, during an initialization of the laboratory automation system, logically reserving at least one buffer area on the transport plane and, after the initialization of the laboratory automation system, buffering in the at least one buffer area sample container carriers carrying sample containers comprising samples waiting for a result of an analysis. Depending on the result of the analysis, the samples are further processed.