Abstract:
A semiconductor device comprises a semiconductor substrate including a first conductivity type first semiconductor layer and a second conductivity type second semiconductor layer formed on the first semiconductor layer. A unit cell for controlling current flowing between a source electrode and a drain electrode is formed in the semiconductor substrate. A trench is formed in a peripheral region of the unit cell to form mesa structure. A field relaxing layer is formed between an insulating film on a side face of the second trench and both the first semiconductor layer and the second semiconductor layer in order to relax concentration of an electric field in the insulating film.
Abstract:
A split queue system for a decoder that supplies one or more micro-operations and data associated with the micro-operations. A main queue is coupled to receive one or more micro-operations from the decoder, and supply it to a next processing stage to provide a process micro-operation. A shadow queue is coupled to receive data associated with the micro-operation, in the same cycle that the micro-operation is supplied to the main queue. A control circuit is coupled to the main queue for issuing micro-operation from the main queue into the next processing stage in a first cycle, and in a second cycle issuing, the micro-operation therefrom. Also in the second cycle, the control circuit issues the data associated with the micro-operation from the shadow queue, so that the data is synchronized with its associated processed micro-operation.
Abstract:
Network topology information may be determined for a plurality of network devices on a network. System identifier information may then be determined for each of the plurality of network devices on the network. The system identifier information may be a list of network solutions that each network device actually or potentially belongs to. The system may then flag the system identifier information to indicate whether each solution is an actual or a potential solution.
Abstract:
Compositions comprise first antioxidants and first additives, such as, a surface additives, performance enhancing additives and lubricant protective additives and optionally second additives and/or second antioxidants. The compositions are useful to improve lubricants, lubricant oils and other lubricant materials. The compositions and methods generally provide longer shelf lives, increased oxidative resistance, improved quality and/or enhanced performance to lubricants or lubricant oils.
Abstract:
Techniques to control power and processing among a plurality of asymmetric cores. In one embodiment, one or more asymmetric cores are power managed to migrate processes or threads among a plurality of cores according to the performance and power needs of the system.
Abstract:
An on-package interface. A first set of single-ended transmitter circuits on a first die. A first set of single-ended receiver circuits on a second die. The receiver circuits have a termination circuit comprising an inverter and a resistive feedback element. A plurality of conductive lines couple the first set of transmitter circuits and the first set of receiver circuits. The lengths of the plurality of conductive lines arc matched.
Abstract:
A sterically hindered phenol and phosphite based compound represented by the following formula: and its use as an antioxidant in a wide range of materials including, but not limited to, food, plastics, elastomers, composites and petroleum based products is disclosed herein.
Abstract:
Techniques to control power and processing among a plurality of asymmetric cores. In one embodiment, one or more asymmetric cores are power managed to migrate processes or threads among a plurality of cores according to the performance and power needs of the system
Abstract:
Systems and methods of manufacturing printed circuit boards using blind and internal micro vias to couple subassemblies. An embodiment of the invention provides a method of manufacturing a printed circuit including attaching a plurality of metal layer carriers to form a first subassembly including at least one copper foil pad on a first surface, applying an encapsulation material onto the first surface of the first subassembly, curing the encapsulation material and the first subassembly; applying a lamination adhesive to a surface of the cured encapsulation material, forming at least one via in the lamination adhesive and the cured encapsulation material to expose the at least one copper foil pad, attaching a plurality of metal layer carriers to form a second subassembly, and attaching the first subassembly and the second subassembly.
Abstract:
An autofocusing endoscope includes an objective lens, a relay optical system arranged to relay an image between the objective lens and a proximal end of the autofocusing endoscope, an optical fiber arranged with a distal end proximate the objective lens, a light source arranged to couple light into the optical fiber, an optical detection system arranged to receive and detect light from the optical fiber, and a data processor constructed to communicate with the optical detection system while in operation. The data processor is configured to determine a distance of a surface to be imaged through the objective lens and provide instructions for adjusting a focus of the autofocusing endoscope of the surface.