Abstract:
The present invention relates to a desulfurizing agent of improved oxidation resistance, ignition resistance and productivity, and a method for manufacturing the desulfurizing agent. The desulfurizing agent may include a plurality of magnesium-aluminum alloy grains with grain boundaries, and a compound of one selected from consisting of magnesium and aluminum and one selected from consisting of alkaline metal and alkaline earth metal, the compound exists in the grain boundaries and is not inside but outside of the magnesium-aluminum alloy grains.
Abstract:
The present invention relates to a medical nonwoven fabric comprising gelable cellulose derivative short-cut fibers as prepared by the paper making process, a preparation method thereof, and an adhesion prevention barrier using the same. The present invention provides a single phase of medical nonwoven fabric comprising gelable cellulose derivative short-cut fibers, to induce capillary action of micropores formed between the fibers and thereby control the gelation time, and provides a composite nonwoven fabric formed by laminating a nonwoven fabric layer comprising a different kind of biodegradable polymer material not susceptible to gelation on the single-phase of medical nonwoven fabric comprising gelable cellulose derivative short-cut fibers, thereby improving dimensional stability and convenience of surgical procedure. The present invention further provides a dyed medical nonwoven fabric to improve visibility, allowing easiness of recognizing the placement or location of the medical nonwoven fabric. Further, the single-phase nonwoven fabric or the composite nonwoven fabric, which makes it possible to efficiently control the gelation time by way of capillary action of the micropores formed between the fiber in the nonwoven fabric, can also be used as an adhesion prevention barrier with improved convenience of surgical procedure and post-surgical adhesion, in contrast to the conventional knit or film type adhesion prevention barrier.
Abstract:
A method of manufacturing an electrochromic polyaniline thin film changeable in color in dependency upon the supply of electricity is provided. The method comprises the steps of polymerizing aniline monomer into polyaniline polymer, separating the polyaniline polymer, liquefying the separated polyaniline polymer into a dispersing solution using a mixed surfactant, and dissolving an UV curing adhesive in the dispersing solution, whereby the polyaniline thin film has the ductility and improved adhesion force for an electric substrate, so that it is applicable to development of a flexible display and as a next generation hi-tech material.
Abstract:
In one example, a method for fabricating a solar cell comprising a first electrode, a first-type layer, an intrinsic layer, a second-type layer and a second electrode is disclosed. The method comprising forming a second-type layer including an amorphous silicon (Si) carbide thin film by an inductively coupled plasma chemical vapor deposition (ICP-CVD) device using mixed gas including hydrogen (H2) gas, silane (SiH4) gas, diborane (B2H6) and ethylene (C2H4) gas, wherein the ethylene (C2H4) gas includes 60% hydrogen gas diluted ethylene gas, the diborane gas is 97% hydrogen gas diluted diborane gas, the mixed gas includes 1 to 1.2% ethylene gas and 6 to 6.5% diborane gas.
Abstract:
Disclosed is a reactor for separating an aluminum layer from multi-layer film wastes to reuse a multi-layer film waste without burying or incinerating the multi-layer film waste including the aluminum. The reactor comprises a cylindrical casing which is filled with a solution to dissolve aluminum layers of the multi-layer film wastes pulverized into a predetermined size, a partition dividing an inner portion of the casing into a reactor tub in which the solution reacts with the aluminum layer and a separator tub which is provided at a portion of the reactor tub to decompose the pulverized multi-layer film wastes in which the aluminum is completely dissolved by the solution, and a stirrer which is installed at an upper portion of the reactor and stirs the solution in the reactor to activate the reaction between the solution and the aluminum in the reactor tub and to transfer the multi-layer film wastes to the separator tub. The partition is spaced apart from a bottom of the casing to form a passage between the bottom of the casing and the partition, and the reactor tub communicates with the separator tub through the passage.
Abstract:
In one example, a method for fabricating a solar cell comprising a first electrode, a first-type layer, an intrinsic layer, a second-type layer and a second electrode is disclosed. The method comprising forming a second-type layer including an amorphous silicon (Si) carbide thin film by an inductively coupled plasma chemical vapor deposition (ICP-CVD) device using mixed gas including hydrogen (H2) gas, silane (SiH4) gas, diborane (B2H6) and ethylene (C2H4) gas, wherein the ethylene (C2H4) gas includes 60% hydrogen gas diluted ethylene gas, the diborane gas is 97% hydrogen gas diluted diborane gas, the mixed gas includes 1 to 1.2% ethylene gas and 6 to 6.5% diborane gas.
Abstract:
Disclosed is a method of preparing a petroleum-alternative bio fuel material such as 5-hydroxymethyl-2-furfural (HMF), 5-alkoxymethyl-2-furfural, levulinic acid alkil ester, etc. through a single process without saccharification, using a catalyst conversion reaction, from galactan that can be massively supplied at low costs and extracted from macroalgae of marine reusable resources.Thus, the macroalgae of the marine biomass resources is used so that a carbon source can be more easily extracted than that of a lignocellulosic biomass resource without a problem of having an effect on grain price like a crop-based biomass.
Abstract:
Disclosed is an atmospheric pressure plasma apparatus for enhancing and or controlling the dissociation of a secondary gas by converting a source gas into a plasma state at atmospheric pressure and controlling the interaction between that plasma and the secondary gas using porous metal, and ceramic tubes to create a path having controllable isolation from the region where plasma is generated.
Abstract:
The present invention relates to a lyotropic chromonic liquid crystal composition, a method for manufacturing a lyotropic chromonic liquid crystal coating film and a lyotropic chromonic liquid crystal coating film manufactured thereby. The lyotropic chromonic liquid crystal composition of the present invention includes chromonic liquid crystal compounds and monomers each having opposing acid-base properties. Use of the lyotropic chromonic liquid crystal composition in the formation of optical films leads to improvements in electrical and optical properties such as mechanical strength, an insulating characteristic and a refractive index.
Abstract:
Provided are a magnesium-based alloy and a manufacturing method thereof. In the method, a magnesium alloy is melted into liquid phase, and an alkaline earth metal oxide is added into a molten magnesium alloy. The alkaline earth metal oxide is exhausted through surface reduction reaction between the melt and the alkaline earth metal oxide. Alkaline earth metal produced by the exhaustion reacts with Mg and/or other alloying elements in the magnesium alloy so that an intermetallic compound is formed. The magnesium prepared by the method is excellent in fluidity and hot-tearing resistance. To this end, the alkaline earth metal oxide added is CaO, and the added amount of CaO is 1.4 to 1.7 times the target weight of Ca to be contained in the final Mg alloy.