Abstract:
Apparatus for proportioned feeding of an analysis fluid (7) onto a target (5), ejects fluid onto the target in small quantities pulse-wise out of a nozzle (2) through a nozzle outlet opening (3). The apparatus allows the precise proportioning of analysis fluid quanta which are substantially larger than in the case of the "drop on demand" methods commonly used to date for analysis fluids, but are smaller than the minimum doses achievable to date with diluters and dispensers. The apparatus includes a pressure chamber (1) in which the analysis fluid is held under pressure, and a valve unit (11) with a valve opening. A closing element is moved by a positioning element. The valve unit (11) is constructed so that the ejection of the fluid is supported by the movement of the closing element (13) during the closure of the valve opening (23).
Abstract:
An integrated module with a heated reservoir to vaporize liquid for semiconductor processes with liquid sources is presented. Shut-off valves and a proportioning pressure valve for controlling the flow of the vapor from the reservoir are mounted on the module for simple conduction heating of the valves. A capacitance manometer also mounted to the module also has its own heating elements. Condensation of the vapor is avoided and consistence performance and reliability is obtained.
Abstract:
An injector for a fluid delivery system is provided to deliver precise volumes of a plurality of fluids in sequence to a treatment reservoir. The injector is in fluid communication with a positive displacement pump which accepts fluid from a fluid source. The injector includes a spring loaded plunger, an end of which contacts a diaphragm adapted to seal an injector inlet from an injector outlet. The end of the plunger is shaped to seat the diaphragm against the injector outlet and to position the diaphragm away from the injector inlet.
Abstract:
The invention relates to a process and apparatus for the supply of a Kroll reactor with zirconium tetrachloride vapor, in which zirconium chloride powder is vaporized in a sublimator by heating power and the vapor obtained is passed into the reactor. Part of the heating power applied in the sublimator is supplied to the powder by an internal heating means, and the remainder of the heating power is supplied to the wall of the sublimator by an external heating means. The heating power of the internal heating means is used for the sublimation of the zirconium tetrachloride powder and the heating power of the external means is applied in order to compensate the heat losses of the wall of the sublimator. The apparatus for application of the method includes a means for measuring the wall temperature of the sublimator and a regulator sensitive to the variation of this temperature with respect to a nominal temperature and which is capable of modifying the power applied to the external and internal heating means, with the total power remaining constant for a fixed vapor flow rate.
Abstract:
In order, in the epitaxial production of semiconductor products and of articles provided with a layer, to be able to make the junction between the layers applied to the substrates atomically sharp, it is important to be able to change the gas mixture, to be introduced into a pulsed reactor or MBE reactor, rapidly, accurately and without losses in respect of quantity and of composition. To this purpose, each of the gases to be introduced into the reactor is conveyed to a separate gas pipette and thereafter the content of the gas pipette is cyclically passed, by means of a pressure differential, into the pulse reactor, with the composition of the mixture being changed per one or more cycles.
Abstract:
A liquid supply device comprises a sealed vessel containing a reactive liquid, a guide cylinder disposed to the inside of the sealed vessel, a piston adapted to slide along the inside of the guide cylinder depending on the change of the pressure in the sealed vessel, a spring for urging the piston toward the inside of the sealed vessel, a pressure-generating catalyst adapted to move into and out of the reactive liquid interlocking with the piston for decomposing the reaction liquid to evolve gases upon contact with the reactive liquid, and a delivery apparatus for sending out the reactive liquid out of the vessel due to the increase in the pressure inside the vessel upon evolution of the gas.The reactive liquid evolving gases is supplied continuously without using a pump or like other positive driving apparatus, but due to the pressure of gases evolved from the reaction solution per se, with no noisy mechanical sounds and operational energy.
Abstract:
A process and apparatus for automatically weighing and introducing chemicals are intended to automatically weigh the chemicals and introduce the chemicals into a treatment tank; the chemicals are injected into a chemical container and weighted, and then transported to a dissolving tank adjunct to the treatment tank, and then introduced into the dissolving tank. A control means is provided to put under its control the operations of injecting into a chemical container a desired amount of desired chemicals selected from among plural sorts of chemicals and driving a transportments and an introducing means automatically in association with this injecting operation.
Abstract:
Conversion flask for use is an apparatus for the sequential performance of chemical processes on a sample of chemical material. The flask includes at least three capillary tubes and a large bore tube extending into the interior thereof for the introduction and withdrawal of various fluids. The capillary tubes are constructed to introduce a plurality of fine bubbles into a liquid within the flask to agitate the liquid and accelerate drying, to impinge chemicals on the walls of the flask, and to produce a spray onto the interior walls of the flask in proximity to its upper end to wash down the interior walls of the flask.
Abstract:
An improved method for the sequential performance of chemical processes on a sample of chemical material wherein the sample is embedded in a solid matrix of fluid permeable material located within a reaction chamber and is sequentially subjected to a plurality of fluids passed through the chamber in a pressurized stream, causing chemical interaction between the sample and the fluids.
Abstract:
A process for the preparation of emulsion polymers having a solid content of about 65% to about 80% is disclosed. The process comprises the step of adding a monomeric mixture to a reaction system maintained at a temperature of from about 60.degree. C. to about 90.degree. C., the monomer addition not exceeding an hourly rate of about one-fourth of the total monomer to be added, the mixture comprising monomers having a particle size of from about 10-100 microns, the system having therein an emulsifier and initiator at the time of the monomeric addition.