Abstract:
Concepts and technologies are described herein for dynamically reranking search results based upon source authority. A search query is received and analyzed. One or more topics are identified in the search query. An authority index is searched to identify authoritative sources for content relating to the identified topic(s). Promoted results corresponding to content generated by the authoritative sources relating to the identified topics are obtained. The promoted results can be presented to an entity requesting the search, or injected into search results. Contribution dimensions associated with the promoted results can be determined, and filters based upon the contribution dimensions can be generated and used by an entity to dynamically manipulate the search results.
Abstract:
The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
Abstract:
Concepts and technologies are described herein for authority ranking for real time and social search. An authority index configured to store data relating to sources is generated. Data relating to the sources, including an authority value, are generated and stored at the authority index. The authority value may be defined as a function of source, topic, and point of view (“POV”), as well as other data, if desired, and may be determined based upon one or more ranking functions. The ranking functions are determined, and data corresponding to the ranking functions is obtained. Each of the ranking functions may be weighted according to a weighting function, a confidence value or interval, one or more time functions, and/or other methods. The obtained authority value may be used for affecting ranking of search results or for other purposes.
Abstract:
Methods and apparatuses for encapsulating inorganic micro- or nanostructures within polymeric microgels are described. In various embodiments, viruses are encapsulated with microgels during microgel formation. The viruses can provide a template for in situ synthesis of the inorganic structures within the microgel. The inorganic structures can be distributed substantially homogeneously throughout the microgel, or can be distributed non-uniformly within the microgel. The inventive microgel compositions can be used for a variety of applications including electronic devices, biotechnological devices, fuel cells, display devices and optical devices.
Abstract:
The invention describes a method for the synthesis of compounds comprising the steps of: (a) compartmentalising two or more sets of primary compounds into microcapsules; such that a proportion of the microcapsules contains two or more compounds; and (b) forming secondary compounds in the microcapsules by chemical reactions between primary compounds from different sets; wherein one or both of steps (a) and (b) is performed under microfluidic control; preferably electronic microfluidic control The invention further allows for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, and which is co-compartmentalised into the microcapsules.
Abstract:
The invention describes a method for the identification of compounds which bind to a target component of a bio-chemical system or modulate the activity of the target, comprising the steps of: a) compartmentalising the compounds into micro-capsules together with the target, such that only a subset of the repertoire is represented in multiple copies in any one microcapsule; and b) identifying the compound which binds to or modulates the activity of the target; wherein at least one step is performed under microfluidic control. The invention enables the screening of large repertoires of molecules which can serve as leads for drug development.
Abstract:
The present invention relates generally to microfluidic structures, and more specifically, to microfluidic structures and methods including microreactors for manipulating fluids and reactions. In some embodiments, structures and methods for manipulating many (e.g., 1000) fluid samples, i.e., in the form of droplets, are described. Processes such as diffusion, evaporation, dilution, and precipitation can be controlled in each fluid sample. These methods also enable conditions within the fluid samples (e.g., concentration) to be controlled. Manipulation of fluid samples can be useful for a variety of applications, including testing for reaction conditions, e.g., in crystallization, chemical, and biological assays.
Abstract:
The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
Abstract:
The invention describes a method for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, comprising the steps of: a) compartmentalising the compounds into microcapsules together with the target, such that only a subset of the repertoire is represented in multiple copies in any one microcapsule; and b) identifying the compound which binds to or modulates the activity of the target; wherein at least one step is performed under microfluidic control. The invention enables the screening of large repertoires of molecules which can serve as leads for drug development.
Abstract:
A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.