Abstract:
Disclosed herein are a soldering connecting pin, a semiconductor package substrate and a method of mounting a semiconductor chip using the same. A semiconductor chip is mounted on the printed circuit board using the soldering connecting pin inserted into a through-hole of the printed circuit board, thereby preventing deformation of the semiconductor package substrate and fatigue failure due to external shocks.
Abstract:
Disclosed herein is a radiating package module for an exothermic element. The radiating package module includes a heat conducting plate which has a groove of an internal thread shape, with the exothermic element being mounted on a surface of the heat conducting plate. A heat pipe is inserted into the groove in a screw-type coupling manner and has a coupling part of an external thread shape. An adhesive is applied between the groove and the coupling part. A cooling unit is coupled to an end of the heat pipe. The radiating package module maintains the reliability with which the radiating package radiates heat and improves structural reliability.
Abstract:
The present invention relates to a method and system for providing a face adjustment image, the method comprising the steps of: (a) generating a matched image by superimposing a cephalometric image having a cranium image of a patient whose face is to be corrected with a three-dimensional facial image of the patient; and (b) displaying a predicted facial image on a screen by transforming soft skin tissues of the face according to the skeletal change in the cephalometric image. According to the present invention, the change in the soft skin tissues and the predicted facial image are displayed on a screen of a computer, a terminal or the like based on the skeletal change in cranium, teeth, prosthesis or the like supporting the soft skin tissues. Therefore, the change in the soft skin tissues can be predicted, thereby increasing the accuracy of a face correction operation, making it more accurate and convenient to plan the operation, and enhancing communication between the patient and medical staff.
Abstract:
The present invention provides a structure of a printed circuit board and a manufacturing method thereof. The method includes: (a) forming a circuit pattern on an insulating layer in which a seed layer is formed; (b) embedding the circuit pattern into the insulating layer by a press method; and (c) removing the seed layer. According to the present invention, a fine pattern may be formed without occurring alignment problem by forming a circuit pattern directly on an insulating layer and reliability of the formed fine pattern may be increased by performing a process of embedding protruded circuits into the insulating layer. In addition, possibility of inferior circuit occurring due to ion migration between adjacent circuits may be reduced by performing over-etching a circuit layer to be lower than a surface of the insulating layer during the etching process of removing a seed layer.
Abstract:
A method for fabricating a large-area nanoscale pattern includes: forming multilayer main thin films isolated by passivation layers; patterning a first main thin film to form a first main pattern; forming a first spacer pattern with respect to the first main pattern; and forming a second main pattern by transferring the first spacer pattern onto a second main thin film. By using multilayer main thin films isolated by different passivation films, spacer lithography capable of reducing a pattern pitch can be repetitively performed, and the pattern pitch is repetitively reduced without shape distortion after formation of micrometer-scale patterns, thereby forming nanometer-scale fine patterns uniformly over a wide area.
Abstract:
The present invention provides a structure of a printed circuit board and a manufacturing method thereof. The method includes: (a) forming a circuit pattern on an insulating layer in which a seed layer is formed; (b) embedding the circuit pattern into the insulating layer by a press method; and (c) removing the seed layer. According to the present invention, a fine pattern may be formed without occurring alignment problem by forming a circuit pattern directly on an insulating layer and reliability of the formed fine pattern may be increased by performing a process of embedding protruded circuits into the insulating layer. In addition, possibility of inferior circuit occurring due to ion migration between adjacent circuits may be reduced by performing over-etching a circuit layer to be lower than a surface of the insulating layer during the etching process of removing a seed layer.
Abstract:
Disclosed herein is a semiconductor chip, including: a first substrate having a concave formed on one surface thereof and an opening formed on a bottom surface of the concave; a second substrate contacting the other surface of the first substrate; and a semiconductor chip mounted in the concave.
Abstract:
A structure of a printed circuit board and a method of manufacturing the same are provided. The manufacturing method includes a first step of forming at least one connecting bump on first circuit patterns and forming a first insulating layer to form an inner circuit board, a second step of processing a second insulating layer with a metal seed layer formed thereon using a mold to form second circuit patterns so as to construct an outer circuit board, and a third step of aligning the inner circuit board and the outer circuit board with each other and laminating the inner circuit board and the outer circuit board. Accordingly, a structure of a high-density high-reliability printed circuit board having a circuit embedded in an insulating layer can be provided. A seed layer forming process for forming an outmost circuit can be removed by using an insulating layer combined with a seed layer. In addition, a conductive structure in the form of a connecting bump is formed, and thus a complicated process of forming a via-hole and filling the via-hole with a conductive material is not required. Furthermore, a process of grinding the surface of the filled conductive material is removed so as to remarkably decrease a circuit error rate.
Abstract:
A method for fabricating a large-area nanoscale pattern includes: forming multilayer main thin films isolated by passivation layers; patterning a first main thin film to form a first main pattern; forming a first spacer pattern with respect to the first main pattern; and forming a second main pattern by transferring the first spacer pattern onto a second main thin film. By using multilayer main thin films isolated by different passivation films, spacer lithography capable of reducing a pattern pitch can be repetitively performed, and the pattern pitch is repetitively reduced without shape distortion after formation of micrometer-scale patterns, thereby forming nanometer-scale fine patterns uniformly over a wide area.