Abstract:
A structure of via hole of electrical circuit board includes an adhesive layer and a conductor layer that are formed after wiring is formed on a carrier board. At least one through hole extends in a vertical direction through the carrier board, the wiring, the adhesive layer, and the conductor layer and forms a hole wall surface. The conductor layer shows a height difference with respect to an exposed zone of the circuit trace in the vertical direction. A conductive cover section covers the conductor layer and the hole wall surface of the through hole. The carrier board is a single-sided board, a double-sided board, a multi-layered board, or a combination thereof, and the single-sided board, the double-sided board, and multi-layered board can be flexible boards, rigid boards, or composite boards combining flexible and rigid boards.
Abstract:
A flexible circuit board includes a first connection section and a second connection section between which a stretchable extension section is connected and has at least a portion that is shapeable by a shapeable material layer to form a spiral section. The spiral section is stretchable in the extension direction. The spiral section provides the flexible circuit board with characteristics of better flexibility, stretchability, capability of eliminating stresses induced in multiple directions.
Abstract:
A water resistant structure for a flexible circuit cable is disclosed. The flexible circuit cable has a first surface, a second surface, a first end, a second end, and an extension section connecting between the first end and the second end. The extension section of the flexible circuit cable extends in an extension direction and defines a water resistant section. The water resistant section has a predetermined water resistant section length. The water resistant section of the flexible circuit cable includes at least one pad member and a water resistant material formed thereon. The water resistant material and the pad member provide the flexible circuit cable with an effect of water resistance.
Abstract:
An attenuation reduction control structure for high-frequency signal transmission lines of a flexible circuit board includes an impedance control layer formed on a surface of a substrate. The impedance control layer includes an attenuation reduction pattern that is arranged in an extension direction of the high-frequency signal transmission lines of the substrate and corresponds to bottom angle structures of the high-frequency signal transmission lines in order to improve attenuation of a high-frequency signal transmitted through the high-frequency signal transmission lines. An opposite surface of the substrate includes a conductive shielding layer formed thereon. The conductive shielding layer is formed with an attenuation reduction pattern corresponding to top angle structures of the high-frequency signal transmission lines.
Abstract:
Disclosed is a grounding pattern structure for high-frequency connection pads of a circuit board. A substrate of the circuit board includes a component surface on which at least a pair of high-frequency connection pads. At least a pair of differential mode signal lines are formed on the substrate and connected to the high-frequency connection pads. The grounding surface of the substrate includes a grounding layer formed at a location corresponding to the differential mode signal lines. The grounding surface of the substrate includes a grounding pattern structure formed thereon to correspond to a location adjacent to the high-frequency connection pads. The grounding pattern structure is electrically connected to the grounding layer. The component surface of the substrate can be provided with a connector mounted thereto with signal terminals of the connector soldered to the high-frequency connection pads.
Abstract:
Disclosed is a bundle division structure for a flexible circuit cable. The flexible circuit cable includes a plurality of conductor units that extends in an extension direction and is collected together to form a clustered structure. The clustered structure defines at least one bundle division section. The bundle division structure includes a bundle division unit, at least a pair of conductor unit receiving slots. The conductor units of the bundle division section are divided into groups that are respectively received in the conductor unit receiving slot. The bundle division unit is coupled to a protection member for protection and positioning purposes.
Abstract:
Disclosed is a double-side-conducting flexible-circuit flat cable with cluster section, which includes a flexible circuit substrate, a first electrical conduction path, a second electrical conduction path, a plurality of first and second conductive contact zones. The flexible circuit substrate has a first surface and a second surface and includes, in an extension direction, a first connection section, a cluster section, and at least one second connection section. The cluster section is composed of a plurality of clustered flat cable components formed by slitting in the extension direction. The first and second electrical conduction paths are respectively formed on the first and second surfaces of the flexible circuit substrate and each extends along one of the clustered flat cable components of the cluster section. The plurality of first and second conductive contact zones are respectively arranged on the first and second surfaces of the flexible circuit substrate at the first connection section. Each of the first and second conductive contact zones extends along one of the electrical conduction paths of the cluster section toward the second connection section.
Abstract:
A contact height adjustment structure for a flexible circuit board is provided for making a plurality of conductive zones on a first surface of the flexible circuit board in tight contact engagement with corresponding contact points of a circuit device. The flexible circuit board is provided, on a second surface opposite to the first surface, with a plurality of height adjustment pads that are arranged at intervals and correspond, in a one-to-one manner, to the plurality of conductive zones. The plurality of height adjustment pads provide the plurality of conductive zones with a pushing force toward the corresponding contact points of the circuit device, so as to adjust a contact height of the conductive zones and to achieve an effect of setting the conductive zones in tight contact engagement with the corresponding contact points.
Abstract:
A conductive bump structure of a circuit board includes at least one composite conductive bump formed in at least one bump preservation region on a conductive layer of the circuit board. The composite conductive bump includes a raised portion and a conductive pillar. The raised portion is raised from a top surface of the conductive layer by a height. A bottom of the conductive pillar is in contact with and is combined with a curved top surface of the raised portion, and a top of the conductive pillar is raised upwards to protrude beyond the top planar surface of the conductive layer by a protrusion height.
Abstract:
A circuit board structure that includes a resin-based conductive adhesive layer is disclosed, in which a conductive layer is arranged between a first circuit board and a second circuit board. The conductive layer includes a first conductive paste layer and the resin-based conductive adhesive layer is formed on the first conductive paste layer. The resin-based conductive adhesive layer contains a sticky resin material and a plurality of conductive particles distributed in the sticky resin material. The plurality of conductive particles establish an electrical connection between the first conductive paste layer and the resin-based conductive adhesive layer.