Abstract:
The present disclosure relates generally to a polishing article, and apparatus and methods of chemical mechanical polishing substrates using the polishing article. In some embodiments, the polishing article, such as a polishing pad, includes multiple layers in which one or more layers (i.e., at least the top layer) includes a plurality of nano-fibers that a positioned to contact a substrate during a polishing process. In one embodiment, a polishing article comprises a layer having a thickness less than about 0.032 inches, and the layer comprising fibers having a diameter of about 10 nanometers to about 200 micro meters.
Abstract:
Embodiments of the disclosure generally provide polishing pads includes a composite pad body and methods for forming the polishing pads. One embodiment provides a polishing pad including a composite pad body. The composite pad body includes one or more first features formed from a first material or a first composition of materials, and one or more second features formed from a second material or a second composition of materials, wherein the one or more first features and the one or more second features are formed by depositing a plurality of layers comprising the first material or first composition of materials and second material or second composition of materials.
Abstract:
A polishing system includes a platen having a top surface, an annular polishing pad supported on the platen, a carrier head to hold a substrate in contact with the annular polishing pad, a support structure from which the carrier head is suspended and which is configured to move the hold the carrier head laterally across the polishing pad, and a controller. The platen is rotatable about an axis of rotation that passes through approximately the center of the platen, and the inner edge of the annular polishing pad is positioned around the axis of rotation. The controller is configured to cause the support structure to position the carrier head such that a portion of the substrate overhangs the inner edge of the annular polishing pad while the substrate is contacting the polishing pad.
Abstract:
Methods adapted to clean a chemical mechanical polishing (CMP) pad are disclosed. The methods include positioning an energized fluid delivery assembly over a CMP polishing pad; rotating the polishing pad on a platen; energizing a fluid within the energized fluid delivery assembly; applying the energized fluid to the polishing pad to dislodge slurry residue and debris; and removing the dislodged slurry residue and debris using a vacuum suction unit. Systems and apparatus for carrying out the methods are provided, as are numerous additional aspects.
Abstract:
A polishing article manufacturing system includes a feed section and a take-up section, the take-up section comprising a supply roll having a polishing article disposed thereon for a chemical mechanical polishing process, a print section comprising a plurality of printheads disposed between the feed section and the take-up section, and a curing section disposed between the feed section and the take-up section, the curing section comprising one or both of a thermal curing device and an electromagnetic curing device.
Abstract:
Embodiments described herein relate to integrated abrasive (IA) polishing pads, and methods of manufacturing IA polishing pads using, at least in part, surface functionalized abrasive particles in an additive manufacturing process, such as a 3D inkjet printing process. In one embodiment, a method of forming a polishing article includes dispensing a first plurality of droplets of a first precursor, curing the first plurality of droplets to form a first layer comprising a portion of a sub-polishing element, dispensing a second plurality of droplets of the first precursor and a second precursor onto the first layer, and curing the second plurality of droplets to form a second layer comprising portions of the sub-polishing element and portions of a plurality of polishing elements. Here, the second precursor includes functionalized abrasive particles having a polymerizable group chemically bonded to surfaces thereof.
Abstract:
A polishing system includes a platen having a top surface to support an annular polishing pad, a carrier head to hold a substrate in contact with the annular polishing pad, a support structure extending above the platen and to which one or more polishing system components are secured, and a support post. The platen is rotatable about an axis of rotation that passes through approximately a center of the platen. The first support post has an upper end coupled to and supporting the support structure and a lower portion that is supported on the platen or that extends through an aperture in the platen.
Abstract:
Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
Abstract:
A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a base material from a first nozzle and an additive material from a second nozzle and solidifying the base and additive material to form a solidified pad material.
Abstract:
A method of fabricating a chemical mechanical polishing pad includes introducing polymer precursors containing acrylate functional groups into a mold, providing abrasive particles and a photo-initiator in the polymer precursors to form a mixture, and while the mixture is contained between a bottom plate and a top cover of the mold, exposing the mixture to ultraviolet radiation through a transparent section of the mold to cause the polymer precursors to form radicals, forming a polymer matrix from the polymer precursor by causing the radicals to cross-link with one another. The polishing layer includes the polymer matrix having the abrasive particles dispersed therein.