Abstract:
A method and apparatus for depositing an etch stop layer. The method begins by introducing process gases into a processing chamber in which a substrate is disposed. An etch stop layer is then deposited over the substrate. An overlying layer is then deposited over the etch stop layer. The etch stop layer substantially protects underlying materials from the etchants used in patterning the overlying layer. Moreover, the etch stop layer also possesses advantageous optical characteristics, making it suitable for use as an antireflective coating in the patterning of layers underlying the etch stop layer.
Abstract:
A method for forming thin polymer layers having low dielectric constants or semiconductor substrates. In one embodiment, the method includes the vaporization of stable di-p-xylylene, the pyrolytic conversion of such gaseous dimer material into reactive monomers, and blending of the resulting gaseous p-xylylene monomers with one or more comonomers having silicon-oxygen bonds and at least two pendent carbon--carbon double bonds. The copolymer films have low dielectric constants, improved thermal stability, and excellent adhesion to silicon oxide layers in comparison to parylene-N homopolymers.
Abstract:
A method and apparatus for depositing a low dielectric constant film by reaction of an organo silane compound and an oxidizing gas. The oxidized organo silane film has excellent barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organo silane film can also be used as an etch stop or an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organo silane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organo silane film is produced by reaction of methyl silane, CH.sub.3 SiH.sub.3, and N.sub.2 O.
Abstract:
An apparatus for minimizing deposition in an exhaust line of a substrate processing chamber. The apparatus includes first and second members having opposing surfaces that define a fluid conduit between them. The fluid conduit includes an inlet, an outlet and a collection chamber between the inlet and the outlet. The apparatus is connected at its inlet to receive the exhaust of the substrate processing chamber, and the collection chamber is structured and arranged to collect particulate matter flowing through the fluid conduit and to inhibit egress of the particulate matter from the collection chamber. A microwave plasma generation system supplies microwave energy within the fluid conduit to form a plasma from etchant gases within the fluid conduit. Constituents from the plasma react with the particulate matter collected in the collection chamber to form gaseous products that may be pumped out of the fluid conduit. The apparatus may further include an electrostatic collector to enhance particle collection in the collection chamber and to further inhibit egress of the particulate matter.
Abstract:
A stable process for depositing an antireflective layer. Helium gas is used to lower the deposition rate of plasma-enhanced silane oxide, silane oxynitride, and silane nitride processes. Helium is also used to stabilize the process, so that different films can be deposited. The invention also provides conditions under which process parameters can be controlled to produce antireflective layers with varying optimum refractive index, absorptive index, and thickness for obtaining the desired optical behavior.
Abstract:
Provided herein are methods and apparatus of hydrogen-based photoresist strip operations that reduce dislocations in a silicon wafer or other substrate. According to various embodiments, the hydrogen-based photoresist strip methods can employ one or more of the following techniques: 1) minimization of hydrogen budget by using short processes with minimal overstrip duration, 2) providing dilute hydrogen, e.g., 2%-16% hydrogen concentration, 3) minimization of material loss by controlling process conditions and chemistry, 4) using a low temperature resist strip, 5) controlling implant conditions and concentrations, and 6) performing one or more post-strip venting processes. Apparatus suitable to perform the photoresist strip methods are also provided.
Abstract:
Techniques for providing core-based virtualization based upon cores provided by one or more processors of a system. A device such as a network device comprising multiple processor cores provides for core-based virtualization. According to one embodiment, a network device is provided comprising a first subsystem for processing packets received by the network device. The first subsystem may comprise a set of one or more processors, the one or more processors providing a plurality of cores. Each core in the plurality of cores may have associated memory resources.
Abstract:
Systems, system components, and methods for plasma stripping are provided. In an embodiment, a gas flow distribution receptacle may have a rounded section that includes an inner surface defining a reception cavity, an outer surface forming an enclosed end, and a centerpoint on the outer surface having a longitudinal axis extending therethrough and through the reception cavity. First and second rings of openings provide flow communication with the plasma chamber. The second ring of openings are disposed between the first ring and the centerpoint, and each opening of the second ring of openings extends between the inner and outer surfaces at a second angle relative to the longitudinal axis that is less than the first angle and has a diameter that is substantially identical to a diameter of an adjacent opening and smaller than the diameters of an opening of the first ring of openings.