Abstract:
Movable vehicular assembly including an electricity generating system includes a movable substrate such as a tire, a power generating system arranged on, in connection with or within the substrate and to generate energy from movement of the substrate, and a circuit coupled to the power generating system and including an energy storage device. The circuit is operable in an active mode when the substrate moves and the power generating system generates energy or the energy storage device contains energy for powering the circuit and in a passive mode when the substrate is not moving and the energy storage device does not contain sufficient energy to power the circuit. The circuit receives power to operate in the passive mode from a signal received by the circuit. Components which may be part of the circuit include a surface-acoustic-wave device and a radio-frequency identification device.
Abstract:
Method and system for obtaining information about an object in a compartment in a vehicle includes directing illumination into the compartment, spatial or temporally modulating the illumination, receiving light reflected from an object in the compartment, and analyzing the reflected light to obtain information about the object. The compartment may be a passenger compartment of an automobile, the trunk of an automobile or the interior of a trailer of a truck. The illumination may be directed from a light source and the reflected light received at a receiver spaced apart from the light source. Analysis of the reflected light may therefore entail applying a triangulation calculation to enable a determination of a distance between the light source and illuminated point on the object. The same method and system can be adapted for monitoring the environment around the vehicle.
Abstract:
Vehicular system for determining the presence of an object in a passenger compartment of the vehicle includes a first image receiver arranged at a first location for obtaining a first two-dimensional view of a portion of the compartment, and a second image receiver arranged at a second location for obtaining a second two-dimensional view of the same portion of the compartment, the second image receiver being arranged relative to the first image receiver such that three dimensions of the portion of the compartment are encompassed by the first and second views. A processor receives images from the first and second image receivers and determines whether an object is present in the compartment based on the images. A reactive system, such as an airbag assembly, may be coupled to the processor and controlled thereby based on the determination of whether an object is present in the imaged portion of the compartment.
Abstract:
Vehicle including a compartment receivable of an object and a system for tracking the object includes at least one imaging device each arranged to receive an image of a portion of the compartment containing the object and a control unit coupled to each imaging device and which controls the imaging device to obtain a first set of images without the object and at least one second image including the object. The control unit analyzes the second image(s) in consideration of the first set of images to derive information about the object. This information may be the type, size and/or position of the object or a part thereof. The information may be used to control vehicular components which have a variable use based on the type, size or position of the object or part thereof.
Abstract:
Vehicular diagnostic arrangement includes a diagnostic system arranged on the vehicle to determine whether any vehicular components is operating non-optimally, is expected to fail or has failed and generate an output indicative or representative thereof, and a communications device coupled to the diagnostic system and arranged to direct a transmission of the output of the diagnostic system to a remote location. Remote locations encompasses remote facilities which handle maintenance or monitoring of the vehicle such as a dealer of the vehicle, the manufacturer of the vehicle or the manufacturer of the components for which non-optimal operation has been detected. The communications device may be arranged to direct the transmission of the output of the diagnostic system to the remote location via the Internet, the remote location including or being an Internet-enabled device possessed by the dealer, manufacturer or owner of the vehicle.
Abstract:
Crash sensor arrangement for determining whether a crash involving the vehicle requires deployment of an occupant restraint device including a first electronic crash sensor mounted in the crush zone of the vehicle for measuring a reaction of the crush zone to a crash and outputting a signal representative of the measurements and a processor coupled to the first sensor for processing the signal to determine whether the restraint device should be deployed. The first sensor may include an accelerometer, a gyroscope or an elongate member arranged to sense the reaction of the crush zone over a substantial part of the front, side or rear of the vehicle. Optionally, a second electronic crash sensor is mounted outside the crush zone to measure a reaction of the vehicle other than crush of the crush zone. Both sensors input signals to the processor which is programmed to determine whether the restraint device should be deployed using an algorithm and data from the first and/or second sensors. The second sensor may be mounted in association with the passenger compartment.
Abstract:
License plate for a vehicle includes a plate having an indicia and arranged to be mounted on the vehicle, and a transponder arranged in the plate. The transponder is arranged to receive a signal from an interrogator, modify the received signal and transmitted the modified signal to the interrogator. The transponder may be a SAW transponder, an RFID transponder and/or include a reflective or back scattering antenna, a polarization antenna, a rotating antenna, or a corner cube or dihedral reflector. An energy harvesting component can be arranged on the license plate or in the license plate for providing power to the transponder. The energy harvesting component generates energy during or from movement or vibration of the vehicle.
Abstract:
Inflatable airbag for a vehicle which is deployed in the event of an accident involving the vehicle to provide protection for an occupant of the vehicle includes a plurality of ribbons coupled together to define an enclosed, fluid-retaining space and a layer of film laminated on at least one of an outer side of the woven ribbons and an inner side of the ribbons. The ribbons may be made from polypropylene, polyethylene, polyester or polyamide and the layers of film may be made from polyethylene, polyurethane, polyester or polyamide. The ribbons and layers of film may be made of the same or different materials.
Abstract:
Vehicle including sensors one of which is a motion-detecting crash sensor, a processing module for processing data generated by the sensors, the module being separate from most if not all of the sensors, and a data bus coupling the sensors and the module together and enabling transfer of data from the sensors to the module. Each sensor may be mounted at a different location on the vehicle and arranged to provide a measurement related to a time-varying state of the sensor or a measurement related to a time-varying state of the mounting location. A deployable occupant restraint may be arranged to deploy to protect an occupant of the vehicle during a crash involving the vehicle. The module determines deployment of the occupant restraint based on the diagnosed state of the vehicle.
Abstract:
Vehicular seat including a weight determining system for obtaining an indication of the weight of an occupying item in the seat includes a seat support structure, a cushion arranged on the seat support structure, the cushion having an upper surface over which the occupying item is situated during occupancy of the seat and being arranged to deflect downward during occupancy of the seat, and a sensor system arranged to sense the downward deflection of the cushion and convert the downward deflection into an indication of the weight of the occupying item. The sensor system may include an elongate cable, a cable support retaining a first end of the cable and a displacement sensor arranged at a second end of the cable for measuring linear variations of the cable which are convertible into the indication of the weight of the occupying item.