Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to integrated CMOS wafers and methods of manufacture. The structure includes: a chip of a first technology type comprising a trench structure on a front side; a chip of a second technology type positioned within the trench structure and embedded therein with an interlevel dielectric material; and a common wiring layer on the front side connecting to both the chip of the first technology type and the chip of the second technology type.
Abstract:
Methods of according to the present disclosure can include: providing a substrate including: a first semiconductor region, a second semiconductor region, and a trench isolation (TI) laterally between the first and second semiconductor regions; forming a seed layer on the TI and the second semiconductor region of the substrate, leaving the first semiconductor region of the substrate exposed; forming an epitaxial layer on the substrate and the seed layer, wherein the epitaxial layer includes: a first semiconductor base material positioned above the first semiconductor region of the substrate, and an extrinsic base region positioned above the seed layer; forming an opening within the extrinsic base material and the seed layer to expose an upper surface of the second semiconductor region; and forming a second semiconductor base material in the opening.
Abstract:
Methods of according to the present disclosure can include: providing a substrate including: a first semiconductor region, a second semiconductor region, and a trench isolation (TI) laterally between the first and second semiconductor regions; forming a seed layer on the TI and the second semiconductor region of the substrate, leaving the first semiconductor region of the substrate exposed; forming an epitaxial layer on the substrate and the seed layer, wherein the epitaxial layer includes: a first semiconductor base material positioned above the first semiconductor region of the substrate, and an extrinsic base region positioned above the seed layer; forming an opening within the extrinsic base material and the seed layer to expose an upper surface of the second semiconductor region; and forming a second semiconductor base material in the opening.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to a heterojunction bipolar transistor with a stress component and methods of manufacture. The heterojunction bipolar transistor includes a collector region, an emitter region and a base region. Stress material is formed within a trench of a substrate and surrounding at least the collector region and the base region.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to integrated CMOS wafers and methods of manufacture. The structure includes: a chip of a first technology type comprising a trench structure on a front side; a chip of a second technology type positioned within the trench structure and embedded therein with an interlevel dielectric material; and a common wiring layer on the front side connecting to both the chip of the first technology type and the chip of the second technology type.
Abstract:
Device structures for a bipolar junction transistor. A layer is formed on a top surface of a substrate. A trench is formed in the layer and has a plurality of sidewalls with a width between an opposite pair of the sidewalls that varies with increasing distance from the top surface of the substrate. A collector pedestal of the bipolar junction transistor is formed in the trench.
Abstract:
Device structure and fabrication methods for a bipolar junction transistor. A trench isolation region is formed that bounds an active device region along a sidewall. A dielectric region is formed that extends laterally from the sidewall of the active device region into the active device region. The dielectric region is located beneath a top surface of the active device region such that a section of the active device region is located between the top surface and the dielectric region.
Abstract:
Device structures for a bipolar junction transistor and methods of fabricating a device structure for a bipolar junction transistor. A first semiconductor layer is formed on a substrate, and a second semiconductor layer is formed on the first semiconductor layer. The first semiconductor layer, the second semiconductor layer, and the substrate are etched to define first and second emitter fingers from the second semiconductor layer and trenches in the substrate that are laterally positioned between the first and second emitter fingers. The first semiconductor layer may function as a base layer in the device structure.
Abstract:
Device structures and design structures for a bipolar junction transistor. The device structure includes a collector region in a substrate, a plurality of isolation structures extending into the substrate and comprised of an electrical insulator, and an isolation region in the substrate. The isolation structures have a length and are arranged with a pitch transverse to the length such that each adjacent pair of the isolation structures is separated by a respective section of the substrate. The isolation region is laterally separated from at least one of the isolation structures by a first portion of the collector region. The isolation region laterally separates a second portion of the collector region from the first portion of the collector region. The device structure further includes an intrinsic base on the second portion of the collector region and an emitter on the intrinsic base. The emitter has a length transversely oriented relative to the length of the isolation structures.
Abstract:
Device structures, fabrication methods, and design structures for a bipolar junction transistor. A trench isolation region is formed in a substrate. The trench isolation region is coextensive with a collector in the substrate. A base layer is formed on the collector and on a first portion of the trench isolation region. A dielectric layer is formed on the base layer and on a second portion of the trench isolation region peripheral to the base layer. After the dielectric layer is formed, the trench isolation region is at least partially removed to define an air gap beneath the dielectric layer and the base layer.