Abstract:
Photodetector structures and methods of manufacture are provided. The method includes forming undercuts about detector material formed on a substrate. The method further includes encapsulating the detector to form airgaps from the undercuts. The method further includes annealing the detector material causing expansion of the detector material into the airgaps.
Abstract:
Disclosed are a method of forming a photodetector and a photodetector structure. In the method, a polycrystalline or amorphous light-absorbing layer is formed on a dielectric layer such that it is in contact with a monocrystalline semiconductor core of an optical waveguide. The light-absorbing layer is then encapsulated in one or more strain-relief layers and a rapid melting growth (RMG) process is performed to crystallize the light-absorbing layer. The strain-relief layer(s) are tuned for controlled strain relief so that, during the RMG process, the light-absorbing layer remains crack-free. The strain-relief layer(s) are then removed and an encapsulation layer is formed over the light-absorbing layer (e.g., filling in surface pits that developed during the RMG process). Subsequently, dopants are implanted through the encapsulation layer to form diffusion regions for PIN diode(s). Since the encapsulation layer is relatively thin, desired dopant profiles can be achieved within the diffusion regions.
Abstract:
Various particular embodiments include a method for forming a photodetector, including: forming a structure including a barrier layer disposed between a layer of doped silicon (Si) and a layer of germanium (Ge), the barrier layer including a crystallization window; and annealing the structure to convert, via the crystallization window, the Ge to a first composition of silicon germanium (SiGe) and the doped Si to a second composition of SiGe.
Abstract:
Device structures for a bipolar junction transistor. A layer is formed on a top surface of a substrate. A trench is formed in the layer and has a plurality of sidewalls with a width between an opposite pair of the sidewalls that varies with increasing distance from the top surface of the substrate. A collector pedestal of the bipolar junction transistor is formed in the trench.
Abstract:
Device structure and fabrication methods for a bipolar junction transistor. A trench isolation region is formed that bounds an active device region along a sidewall. A dielectric region is formed that extends laterally from the sidewall of the active device region into the active device region. The dielectric region is located beneath a top surface of the active device region such that a section of the active device region is located between the top surface and the dielectric region.
Abstract:
Device structures, fabrication methods, and design structures for a bipolar junction transistor. A trench isolation region is formed in a substrate. The trench isolation region is coextensive with a collector in the substrate. A base layer is formed on the collector and on a first portion of the trench isolation region. A dielectric layer is formed on the base layer and on a second portion of the trench isolation region peripheral to the base layer. After the dielectric layer is formed, the trench isolation region is at least partially removed to define an air gap beneath the dielectric layer and the base layer.
Abstract:
Device structures, fabrication methods, and design structures for a bipolar junction transistor. A trench isolation region is formed in a substrate. The trench isolation region is coextensive with a collector in the substrate. A base layer is formed on the collector and on a first portion of the trench isolation region. A dielectric layer is formed on the base layer and on a second portion of the trench isolation region peripheral to the base layer. After the dielectric layer is formed, the trench isolation region is at least partially removed to define an air gap beneath the dielectric layer and the base layer.
Abstract:
Device structures for a bipolar junction transistor. A layer is formed on a top surface of a substrate. A trench is formed in the layer and has a plurality of sidewalls with a width between an opposite pair of the sidewalls that varies with increasing distance from the top surface of the substrate. A collector pedestal of the bipolar junction transistor is formed in the trench.
Abstract:
Fabrication methods, device structures, and design structures for a bipolar junction transistor. A dielectric structure is formed that is coextensive with a single crystal semiconductor material of a substrate in an active device region. A semiconductor layer is formed that includes a single crystal section coupled with the active device region. The semiconductor layer has an edge that overlaps with a top surface of the dielectric structure. An intrinsic base layer is formed on the semiconductor layer.
Abstract:
Fabrication methods, device structures, and design structures for a bipolar junction transistor. A dielectric structure is formed that is coextensive with a single crystal semiconductor material of a substrate in an active device region. A semiconductor layer is formed that includes a single crystal section coupled with the active device region. The semiconductor layer has an edge that overlaps with a top surface of the dielectric structure. An intrinsic base layer is formed on the semiconductor layer.