Abstract:
A method of forming a via to an underlying layer of a semiconductor device is provided. The method may include forming a pillar over the underlying layer using a sidewall image transfer process. A dielectric layer is formed over the pillar and the underlying layer; and a via mask patterned over the dielectric layer, the via mask having a mask opening at least partially overlapping the pillar. A via opening is etched in the dielectric layer using the via mask, the mask opening defining a first lateral dimension of the via opening in a first direction and the pillar defining a second lateral dimension of the via opening in a second direction different than the first direction. The via opening is filled with a conductor to form the via. A semiconductor device and via structure are also provided.
Abstract:
Methods of forming printed patterns and structures formed using printed patterns. A first line and a second line are lithographically printed in a first layer composed of photoimageable material with a space arranged between the first line and the second line. A dummy assist feature is also lithographically printed in the photoimageable material of the first layer. A second layer underlying the first layer is etched with the first line, the second line, and the dummy assist feature present as an etch mask. The dummy assist feature is arranged on a portion of the space adjacent to the first line and supports the photoimageable material of the first line during etching.
Abstract:
At least one method, apparatus and system disclosed involves providing a functional cell for a circuit layout for an integrated circuit device. A determination as to a first location for a two-dimensional portion of a first power rail in a functional cell is made. A first portion of the first power rail is formed in a first direction. A second portion of the first power rail is formed in a second direction in the first location for the two-dimensional portion.
Abstract:
A method of optical proximity correction (OPC) in extreme ultraviolet lithography (EUV) lithography includes providing a patterned layout design including first and second design polygons that correspond with the pre-pattern opening, wherein the first and second design polygons are separated by a separation distance, and correcting the patterned layout design using OPC by generating (1) a third polygon that has dimensions corresponding to a combination of the first and second design polygons and the separation distance and (2) and filled polygon within the third polygon, thereby generating an OPC-corrected patterned layout design. EUV photomasks may be manufactured from the OPC-corrected patterned layout design, and integrated circuits may be fabricated using such EUV photomasks.
Abstract:
A method of forming a via to an underlying layer of a semiconductor device is provided. The method may include forming a pillar over the underlying layer using a sidewall image transfer process. A dielectric layer is formed over the pillar and the underlying layer; and a via mask patterned over the dielectric layer, the via mask having a mask opening at least partially overlapping the pillar. A via opening is etched in the dielectric layer using the via mask, the mask opening defining a first lateral dimension of the via opening in a first direction and the pillar defining a second lateral dimension of the via opening in a second direction different than the first direction. The via opening is filled with a conductor to form the via. A semiconductor device and via structure are also provided.
Abstract:
A method of optical proximity correction (OPC) in extreme ultraviolet lithography (EUV) lithography includes providing a patterned layout design including first and second design polygons that correspond with the pre-pattern opening, wherein the first and second design polygons are separated by a separation distance, and correcting the patterned layout design using OPC by generating (1) a third polygon that has dimensions corresponding to a combination of the first and second design polygons and the separation distance and (2) and filled polygon within the third polygon, thereby generating an OPC-corrected patterned layout design. EUV photomasks may be manufactured from the OPC-corrected patterned layout design, and integrated circuits may be fabricated using such EUV photomasks.
Abstract:
A method of forming an improved EUV mask and pellicle with airflow between the area enclosed by the mask and pellicle and the area outside the mask and pellicle and the resulting device are disclosed. Embodiments include forming a frame around a patterned area on an EUV mask; forming a membrane over the frame; and forming holes in the frame.
Abstract:
One method disclosed includes performing a selective etching process through a gate cavity to selectively remove a portion of a first semiconductor material relative to a second layer of a second semiconductor material and a substrate so as to thereby define a space between the second semiconducting material and the substrate, filling substantially all of the space with an insulating material so as to thereby define a substantially self-aligned channel isolation region positioned under at least what will become the channel region of the FinFET device.